Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering
- PMID: 12957922
- PMCID: PMC194974
- DOI: 10.1128/AEM.69.9.5343-5353.2003
Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering
Abstract
Bacillus thuringiensis mosquitocidal toxin Cry4Ba has no significant natural activity against Culex quinquefasciatus or Culex pipiens (50% lethal concentrations [LC(50)], >80,000 and >20,000 ng/ml, respectively). We introduced amino acid substitutions in three putative loops of domain II of Cry4Ba. The mutant proteins were tested on four different species of mosquitoes, Aedes aegypti, Anopheles quadrimaculatus, C. quinquefasciatus, and C. pipiens. Putative loop 1 and 2 exchanges eliminated activity towards A. aegypti and A. quadrimaculatus. Mutations in a putative loop 3 resulted in a final increase in toxicity of >700-fold and >285-fold against C. quinquefasciatus (LC(50) congruent with 114 ng/ml) and C. pipiens (LC(50) 37 ng/ml), respectively. The enhanced protein (mutein) has very little negative effect on the activity against Anopheles or AEDES: These results suggest that the introduction of short variable sequences of the loop regions from one toxin into another might provide a general rational design approach to enhancing B. thuringiensis Cry toxins.
Figures








Similar articles
-
Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II.Appl Environ Microbiol. 2004 Jun;70(6):3769-71. doi: 10.1128/AEM.70.6.3769-3771.2004. Appl Environ Microbiol. 2004. PMID: 15184189 Free PMC article.
-
Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae.FEMS Microbiol Lett. 2005 Nov 1;252(1):121-6. doi: 10.1016/j.femsle.2005.08.038. Epub 2005 Sep 7. FEMS Microbiol Lett. 2005. PMID: 16168580
-
Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity.FEBS Lett. 2009 Jun 18;583(12):2021-30. doi: 10.1016/j.febslet.2009.05.020. Epub 2009 May 18. FEBS Lett. 2009. PMID: 19450583 Free PMC article.
-
Cry29A and Cry30A: two novel delta-endotoxins isolated from Bacillus thuringiensis serovar medellin.Syst Appl Microbiol. 2003 Nov;26(4):502-4. doi: 10.1078/072320203770865783. Syst Appl Microbiol. 2003. PMID: 14666976
-
Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution.J Bacteriol. 2006 May;188(9):3391-401. doi: 10.1128/JB.188.9.3391-3401.2006. J Bacteriol. 2006. PMID: 16621834 Free PMC article.
Cited by
-
Cry4Aa and Cry4Ba Mosquito-Active Toxins Utilize Different Domains in Binding to a Particular Culex ALP Isoform: A Functional Toxin Receptor Implicating Differential Actions on Target Larvae.Toxins (Basel). 2022 Sep 21;14(10):652. doi: 10.3390/toxins14100652. Toxins (Basel). 2022. PMID: 36287921 Free PMC article.
-
Bacillus thuringiensis subsp. sichuansis strain MC28 produces a novel crystal protein with activity against Culex quinquefasciatus larvae.World J Microbiol Biotechnol. 2014 Apr;30(4):1417-21. doi: 10.1007/s11274-013-1548-1. Epub 2013 Nov 2. World J Microbiol Biotechnol. 2014. PMID: 24185745
-
Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins?Toxins (Basel). 2021 Jun 26;13(7):441. doi: 10.3390/toxins13070441. Toxins (Basel). 2021. PMID: 34206749 Free PMC article. Review.
-
Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3.Appl Environ Microbiol. 2017 Feb 1;83(4):e02864-16. doi: 10.1128/AEM.02864-16. Print 2017 Feb 15. Appl Environ Microbiol. 2017. PMID: 27940541 Free PMC article.
-
Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism.Peptides. 2011 Mar;32(3):595-600. doi: 10.1016/j.peptides.2010.06.005. Epub 2010 Jun 15. Peptides. 2011. PMID: 20558220 Free PMC article.
References
-
- Angsuthanasombat, C., N. Crickmore, and D. J. Ellar. 1992. Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 94:63-68. - PubMed
-
- Angsuthanasombat, C., N. Crickmore, and D. J. Ellar. 1993. Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB delta endotoxin. FEMS Microbiol. Lett. 111:255-261. - PubMed
-
- Bar, E., J. Lieman-Hurwitz, E. Rahamim, A. Keynan, and N. Sandler. 1991. Cloning and expression of Bacillus thuringiensis israelensis δ-endotoxin in B. sphaericus. J. Invertebr. Pathol. 57:149-158. - PubMed
-
- Becker, N., and J. Margalit. 1993. Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies, p. 145-170. In P. F. Entwistle, P. F. Cory, M. J. Bailey, and S. Higgs (ed.), Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Wiley & Sons, Inc., New York, N.Y.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources