Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan 1;169(1):46-56.
doi: 10.1164/rccm.200205-394OC. Epub 2003 Sep 4.

Hypercapnic acidosis attenuates endotoxin-induced acute lung injury

Affiliations
Comparative Study

Hypercapnic acidosis attenuates endotoxin-induced acute lung injury

John G Laffey et al. Am J Respir Crit Care Med. .

Abstract

Deliberate induction of prophylactic hypercapnic acidosis protects against lung injury after in vivo ischemia-reperfusion and ventilation-induced lung injury. However, the efficacy of hypercapnic acidosis in sepsis, the commonest cause of clinical acute respiratory distress syndrome, is not known. We investigated whether hypercapnic acidosis--induced by adding CO2 to inspired gas--would be protective against endotoxin-induced lung injury in an in vivo rat model. Prophylactic institution of hypercapnic acidosis (i.e., induction before endotoxin instillation) attenuated the decrement in arterial oxygenation, improved lung compliance, and attenuated alveolar neutrophil infiltration compared with control conditions. Therapeutic institution of hypercapnic acidosis, that is, induction after endotoxin instillation, attenuated the decrement in oxygenation, improved lung compliance, and reduced alveolar neutrophil infiltration and histologic indices of lung injury. Therapeutic hypercapnic acidosis attenuated the endotoxin-induced increase in the higher oxides of nitrogen and nitrosothiols in the lung tissue and epithelial lining fluid. Lung epithelial lining fluid nitrotyrosine concentrations were increased with hypercapnic acidosis. We conclude that hypercapnic acidosis attenuates acute endotoxin-induced lung injury, and is efficacious both prophylactically and therapeutically. The beneficial actions of hypercapnic acidosis were not mediated by inhibition of peroxynitrite-induced nitration within proteins.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources