The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome
- PMID: 12958599
- DOI: 10.1038/ng1240
The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome
Abstract
We combined transcriptional profiling and quantitative genetic analysis to elucidate the genetic architecture of olfactory behavior in Drosophila melanogaster. We applied whole-genome expression analysis to five coisogenic smell-impaired (smi) mutant lines and their control. We used analysis of variance to partition variation in transcript abundance between males and females and between smi genotypes and to determine the genotype-by-sex interaction. A total of 666 genes showed sexual dimorphism in transcript abundance, and 530 genes were coregulated in response to one or more smi mutations, showing considerable epistasis at the level of the transcriptome in response to single mutations. Quantitative complementation tests of mutations at these coregulated genes with the smi mutations showed that in most cases (67%) epistatic interactions for olfactory behavior mirrored epistasis at the level of transcription, thus identifying new candidate genes regulating olfactory behavior.
Similar articles
-
Functional genomics of odor-guided behavior in Drosophila melanogaster.Chem Senses. 2001 Feb;26(2):215-21. doi: 10.1093/chemse/26.2.215. Chem Senses. 2001. PMID: 11238254
-
The genetic architecture of odor-guided behavior in Drosophila melanogaster.Behav Genet. 2001 Jan;31(1):17-27. doi: 10.1023/a:1010201723966. Behav Genet. 2001. PMID: 11529271
-
Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior.Genes Brain Behav. 2016 Feb;15(2):280-90. doi: 10.1111/gbb.12279. Epub 2016 Jan 18. Genes Brain Behav. 2016. PMID: 26678546 Free PMC article.
-
Epistasis for quantitative traits in Drosophila.Methods Mol Biol. 2015;1253:47-70. doi: 10.1007/978-1-4939-2155-3_4. Methods Mol Biol. 2015. PMID: 25403527 Review.
-
Olfactory mechanisms in Drosophila melanogaster.Curr Opin Neurobiol. 1996 Aug;6(4):500-5. doi: 10.1016/s0959-4388(96)80056-0. Curr Opin Neurobiol. 1996. PMID: 8794094 Review.
Cited by
-
Quantitative genomics of starvation stress resistance in Drosophila.Genome Biol. 2005;6(4):R36. doi: 10.1186/gb-2005-6-4-r36. Epub 2005 Mar 24. Genome Biol. 2005. PMID: 15833123 Free PMC article.
-
Quantitative and molecular genetic analyses of mutations increasing Drosophila life span.PLoS Genet. 2010 Jul 29;6(7):e1001037. doi: 10.1371/journal.pgen.1001037. PLoS Genet. 2010. PMID: 20686706 Free PMC article.
-
Transcriptome Analysis and Discovery of Genes Relevant to Development in Bradysia odoriphaga at Three Developmental Stages.PLoS One. 2016 Feb 18;11(2):e0146812. doi: 10.1371/journal.pone.0146812. eCollection 2016. PLoS One. 2016. PMID: 26891450 Free PMC article.
-
Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression.Genetics. 2009 Oct;183(2):547-61, 1SI-21SI. doi: 10.1534/genetics.109.105957. Epub 2009 Aug 10. Genetics. 2009. PMID: 19667135 Free PMC article.
-
Epistasis and quantitative traits: using model organisms to study gene-gene interactions.Nat Rev Genet. 2014 Jan;15(1):22-33. doi: 10.1038/nrg3627. Epub 2013 Dec 3. Nat Rev Genet. 2014. PMID: 24296533 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases