Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 28;278(48):48041-50.
doi: 10.1074/jbc.M304834200. Epub 2003 Sep 5.

Release of ribosome-bound ribosome recycling factor by elongation factor G

Affiliations
Free article

Release of ribosome-bound ribosome recycling factor by elongation factor G

Michael C Kiel et al. J Biol Chem. .
Free article

Abstract

Elongation factor G (EF-G) and ribosome recycling factor (RRF) disassemble post-termination complexes of ribosome, mRNA, and tRNA. RRF forms stable complexes with 70 S ribosomes and 50 S ribosomal subunits. Here, we show that EF-G releases RRF from 70 S ribosomal and model post-termination complexes but not from 50 S ribosomal subunit complexes. The release of bound RRF by EF-G is stimulated by GTP analogues. The EF-G-dependent release occurs in the presence of fusidic acid and viomycin. However, thiostrepton inhibits the release. RRF was shown to bind to EF-G-ribosome complexes in the presence of GTP with much weaker affinity, suggesting that EF-G may move RRF to this position during the release of RRF. On the other hand, RRF did not bind to EF-G-ribosome complexes with fusidic acid, suggesting that EF-G stabilized by fusidic acid does not represent the natural post-termination complex. In contrast, the complexes of ribosome, EF-G and thiostrepton could bind RRF, although with lower affinity. These results suggest that thiostrepton traps an intermediate complex having RRF on a position that clashes with the P/E site bound tRNA. Mutants of EF-G that are impaired for translocation fail to disassemble post-termination complexes and exhibit lower activity in releasing RRF. We propose that the release of ribosome-bound RRF by EF-G is required for post-termination complex disassembly. Before release from the ribosome, the position of RRF on the ribosome will change from the original A/P site to a new location that clashes with tRNA on the P/E site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources