Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 14;278(46):45391-6.
doi: 10.1074/jbc.M307447200. Epub 2003 Sep 5.

The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae

Affiliations
Free article

The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae

Valérie Haurie et al. J Biol Chem. .
Free article

Abstract

In Saccharomyces cerevisiae the transition between the fermentative and the oxidative metabolism, called the diauxic shift, is associated with major changes in gene expression. In this study, we characterized a novel family of five genes whose expression is induced during the diauxic shift. These genes, FET3, FTR1, TIS11, SIT1, and FIT2, are involved in the iron uptake pathway. We showed that their induction at the diauxic shift is positively controlled by the Snf1/Snf4 kinase pathway. The transcriptional factor Aft1p, which is known to control their induction in response to iron limitation, is also required for their induction during the diauxic shift. The increase of the extracellular iron concentration does not affect this induction, indicating that glucose exhaustion by itself would be the signal. The possibility that the Snf1/Snf4 pathway was also involved in the induction of the same set of genes in response to iron starvation was considered. We demonstrate here that this is not the case. Thus, the two signals, glucose exhaustion and iron starvation, use two independent pathways to activate the same set of genes through the Aft1p transcriptional factor.

PubMed Disclaimer

Publication types

MeSH terms