Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 14;278(46):45135-44.
doi: 10.1074/jbc.M307417200. Epub 2003 Sep 5.

Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire

Affiliations
Free article

Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire

Weimin Zhong et al. J Biol Chem. .
Free article

Abstract

A genome-wide search using major histocompatibility complex (MHC) class I binding and proteosome cleavage site algorithms identified 101 influenza A PR8 virus-derived peptides as potential epitopes for CD8+ T cell recognition in the H-2b mouse. Cytokine-based flow cytometry, ELISPOT, and cytotoxic T lymphocyte assays reveal that 16 are recognized by CD8+ T cells recovered directly ex vivo from infected animals, accounting for greater than 70% of CD8+ T cells recruited to lung after primary infection. Only six of the 22 highest affinity MHC class I binding peptides comprise cytotoxic T lymphocyte epitopes. The remaining non-immunogenic peptides have equivalent MHC affinity and MHC-peptide complex half-lives, eliciting T cell responses when given in adjuvant and with T cell receptor-ligand avidity comparable with their immunogenic counterparts. As revealed by a novel high sensitivity nanospray tandem mass spectrometry methodology, failure to process those predicted epitopes may contribute significantly to the absent response. These results have important implications for rationale design of CD8+ T cell vaccines.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms