Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Nov;40(9):910-9.

[L-carnitine: metabolism, functions and value in pathology]

[Article in French]
Affiliations
  • PMID: 1296165
Review

[L-carnitine: metabolism, functions and value in pathology]

[Article in French]
C Jacob et al. Pathol Biol (Paris). 1992 Nov.

Abstract

Although L-carnitine is not considered as an essential nutrient, endogenous synthesis may fail to ensure adequate L-carnitine levels in neonates, especially those born prematurely. Free L-carnitine is found in many foods, mainly those from animal sources. Absorption of free L-carnitine is virtually complete. Lysine and methionine are necessary ingredients for the biosynthesis of L-carnitine. All tissues in the body can produce deoxy-carnitine but, in humans, the enzyme that enables hydroxylation of deoxy-carnitine to carnitine is found only in the liver, brain and kidneys. Complex exchanges of carnitine and its precursors occur between tissues. Muscles take up carnitine from the bloodstream and contain most of the body carnitine stores. L-carnitine and L-carnitine esters are eliminated mainly through the kidneys, which may play a central role in the homeostasis of this compound. Thyroid hormones adrenocorticotrophin (ACTH), and diet all influence urinary excretion of L-carnitine. Free L-carnitine can be assayed in plasma and urine and is occasionally measured in muscle biopsy specimens. Plasma L-carnitine levels may not accurately reflect L-carnitine body stores. L-carnitine ensures transfer of fatty acids to the mitochondria where they undergo oxidation. This process is associated with production of short-chain acylcarnitine which exit from the mitochondria or peroxisomes. L-carnitine ensures regeneration of coenzyme A and is thus involved in energy metabolism. L-carnitine also ensures elimination of xenobiotic substances. Carnitine deficiencies are common. Currently, these deficiencies are classified into two groups. In deficiencies with myopathy, only the muscles are deficient in L-carnitine, perhaps as a result of a primary anomaly of the L-carnitine transport system in muscles. In systemic deficiencies, L-carnitine levels are low in the plasma and in all body tissues. Systemic L-carnitine deficiencies are usually the result of a variety of disease states including deficient intake in premature infants or long-term parenteral nutrition; renal failure; organic acidemias; and Reye's syndrome. Modifications in L-carnitine metabolism have also been reported in patients with diabetes mellitus, malignancies, myocardial ischemia, and alcohol abuse. A large number of supplementation trials have been carried out.

PubMed Disclaimer

Similar articles

Cited by