A study of statistical error in isothermal titration calorimetry
- PMID: 12963058
- DOI: 10.1016/s0003-2697(03)00406-8
A study of statistical error in isothermal titration calorimetry
Abstract
In isothermal titration calorimetry (ITC), the two main sources of random (statistical) error are associated with the extraction of the heat q from the measured temperature changes and with the delivery of metered volumes of titrant. The former leads to uncertainty that is approximately constant and the latter to uncertainty that is proportional to q. The role of these errors in the analysis of ITC data by nonlinear least squares is examined for the case of 1:1 binding, M+X right arrow over left arrow MX. The standard errors in the key parameters-the equilibrium constant Ko and the enthalpy DeltaHo-are assessed from the variance-covariance matrix computed for exactly fitting data. Monte Carlo calculations confirm that these "exact" estimates will normally suffice and show further that neglect of weights in the nonlinear fitting can result in significant loss of efficiency. The effects of the titrant volume error are strongly dependent on assumptions about the nature of this error: If it is random in the integral volume instead of the differential volume, correlated least-squares is required for proper analysis, and the parameter standard errors decrease with increasing number of titration steps rather than increase.
Similar articles
-
Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares.Anal Biochem. 2005 Aug 1;343(1):106-15. doi: 10.1016/j.ab.2005.04.026. Anal Biochem. 2005. PMID: 15936713
-
Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the "standard protocol".Anal Biochem. 2012 May 15;424(2):211-20. doi: 10.1016/j.ab.2011.12.035. Epub 2012 Jan 3. Anal Biochem. 2012. PMID: 22306472
-
Calorimetric vs. van't Hoff binding enthalpies from isothermal titration calorimetry: Ba2+-crown ether complexation.Biophys Chem. 2004 Jul 1;110(1-2):15-24. doi: 10.1016/j.bpc.2003.12.011. Biophys Chem. 2004. PMID: 15223140
-
Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions.Methods. 2007 Jun;42(2):162-72. doi: 10.1016/j.ymeth.2007.01.010. Methods. 2007. PMID: 17472898 Review.
-
Making cool drugs hot: isothermal titration calorimetry as a tool to study binding energetics.Biotechniques. 2001 Jul;31(1):164-6, 168, 170 passim. Biotechniques. 2001. PMID: 11464510 Review.
Cited by
-
Obtaining precise and accurate results by ITC.Eur Biophys J. 2019 Dec;48(8):825-835. doi: 10.1007/s00249-019-01399-8. Epub 2019 Sep 25. Eur Biophys J. 2019. PMID: 31555842
-
Bayesian analysis of isothermal titration calorimetry for binding thermodynamics.PLoS One. 2018 Sep 13;13(9):e0203224. doi: 10.1371/journal.pone.0203224. eCollection 2018. PLoS One. 2018. PMID: 30212471 Free PMC article.
-
Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects.J Am Chem Soc. 2006 Sep 20;128(37):12281-8. doi: 10.1021/ja064012h. J Am Chem Soc. 2006. PMID: 16967979 Free PMC article.
-
Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures.PLoS One. 2022 Sep 29;17(9):e0273656. doi: 10.1371/journal.pone.0273656. eCollection 2022. PLoS One. 2022. PMID: 36173969 Free PMC article.
-
Uncertainty in protein-ligand binding constants: asymmetric confidence intervals versus standard errors.Eur Biophys J. 2021 May;50(3-4):661-670. doi: 10.1007/s00249-021-01518-4. Epub 2021 Apr 10. Eur Biophys J. 2021. PMID: 33837826
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials