Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;41(4):331-8.
doi: 10.1080/13693780310001600859.

Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans

Affiliations

Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans

N A R Gow et al. Med Mycol. 2003 Aug.

Abstract

We report the development of a simple model for assessing the ability of the fungal pathogen Candida albicans to invade the chorioallantoic membrane (CAM) of fertilized hens' eggs. Wild-type and mutant strains of C. albicans were inoculated onto CAM surfaces either as a liquid suspension or on a sterile filter disc. Invasion of the membrane led to death of the embryo due to damage of the CAM, which could be examined histologically to show cell distribution and morphology, and by RT-PCR for assessment of patterns of fungal gene expression in vivo. Prophylactic or co-administration of fluconazole with the inoculum protected the embryo from infection. Secretory aspartyl protease (Sap) mutant strains with reported attenuation of virulence were virulent in the CAM model. However, a C. albicans strain with mutations in two transcription factors Efg1 and Cph1 was unable to form hyphae on the CAM or to penetrate it. The chick CAM, therefore, represents an experimentally tractable and inexpensive alternative to rodent or tissue culture-based invasion models, and can be used to investigate fungal pathogenesis and the genetic regulation of infection and membrane penetration of C. albicans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources