Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 1;75(13):3161-7.
doi: 10.1021/ac034155b.

Measurement of enzyme kinetics using a continuous-flow microfluidic system

Affiliations

Measurement of enzyme kinetics using a continuous-flow microfluidic system

Gi Hun Seong et al. Anal Chem. .

Abstract

This paper describes a microanalytical method for determining enzyme kinetics using a continuous-flow microfluidic system. The analysis is carried out by immobilizing the enzyme on microbeads, packing the microbeads into a chip-based microreactor (volume approximately 1.0 nL), and flowing the substrate over the packed bed. Data were analyzed using the Lilly-Hornby equation and compared to values obtained from conventional measurements based on the Michaelis-Menten equation. The two different enzyme-catalyzed reactions studied were chosen so that the substrate would be nonfluorescent and the product fluorescent. The first reaction involved the horseradish peroxidase-catalyzed reaction between hydrogen peroxide and N-acetyl-3,7-dihydroxyphenoxazine (amplex red) to yield fluorescent resorufin, and the second the beta-galactosidase-catalyzed reaction of nonfluorescent resorufin-beta-D-galactopyranoside to yield D-galactose and fluorescent resorufin. In both cases, the microfluidics-based method yielded the same result obtained from the standard Michaelis-Menten treatment. The continuous-flow method required approximately 10 microL of substrate solution and 10(9) enzyme molecules. This approach provides a new means for rapid determination of enzyme kinetics in microfluidic systems, which may be useful for clinical diagnostics, and drug discovery and screening.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources