Human hopping on damped surfaces: strategies for adjusting leg mechanics
- PMID: 12965003
- PMCID: PMC1691428
- DOI: 10.1098/rspb.2003.2435
Human hopping on damped surfaces: strategies for adjusting leg mechanics
Abstract
Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.
Similar articles
-
Human hoppers compensate for simultaneous changes in surface compression and damping.J Biomech. 2006;39(6):1030-8. doi: 10.1016/j.jbiomech.2005.02.011. J Biomech. 2006. PMID: 16549093
-
Neuromuscular changes for hopping on a range of damped surfaces.J Appl Physiol (1985). 2004 May;96(5):1996-2004. doi: 10.1152/japplphysiol.00983.2003. Epub 2003 Dec 19. J Appl Physiol (1985). 2004. PMID: 14688034
-
Leg exoskeleton reduces the metabolic cost of human hopping.J Appl Physiol (1985). 2009 Sep;107(3):670-8. doi: 10.1152/japplphysiol.91609.2008. Epub 2009 May 7. J Appl Physiol (1985). 2009. PMID: 19423835
-
Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.J Exp Zool A Comp Exp Biol. 2006 Nov 1;305(11):899-911. doi: 10.1002/jez.a.334. J Exp Zool A Comp Exp Biol. 2006. PMID: 17029267 Review.
-
Mass-spring-damper modelling of the human body to study running and hopping--an overview.Proc Inst Mech Eng H. 2011 Dec;225(12):1121-35. doi: 10.1177/0954411911424210. Proc Inst Mech Eng H. 2011. PMID: 22320052 Review.
Cited by
-
Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1516-29. doi: 10.1098/rstb.2010.0348. Philos Trans R Soc Lond B Biol Sci. 2011. PMID: 21502123 Free PMC article.
-
Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.J Exp Biol. 2014 Nov 1;217(Pt 21):3786-96. doi: 10.1242/jeb.102640. J Exp Biol. 2014. PMID: 25355848 Free PMC article.
-
Neuromechanical adaptations of foot function when hopping on a damped surface.J Appl Physiol (1985). 2022 Dec 1;133(6):1302-1308. doi: 10.1152/japplphysiol.00012.2022. Epub 2022 Oct 13. J Appl Physiol (1985). 2022. PMID: 36227162 Free PMC article.
-
Not all brawn, but some brain. Strength gains after training alters kinematic motor abundance in hopping.PeerJ. 2018 Nov 23;6:e6010. doi: 10.7717/peerj.6010. eCollection 2018. PeerJ. 2018. PMID: 30505639 Free PMC article.
-
Effect of Substrates' Compliance on the Jumping Mechanism of Locusta migratoria.Front Bioeng Biotechnol. 2020 Jul 6;8:661. doi: 10.3389/fbioe.2020.00661. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32775320 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources