Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;20(8):725-43.
doi: 10.1089/089771503767869962.

Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study

Affiliations
Comparative Study

Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study

Martin Ulrich Schuhmann et al. J Neurotrauma. 2003 Aug.

Abstract

Proton MR spectroscopy (1H-MRS) has been previously used to monitor metabolic changes in areas of diffuse brain injury. We studied metabolism in the close vicinity of experimental traumatic brain contusions and remote on the contralateral side from 1h to 28d post-injury. Changes of creatine and phosphocreatine (Cr&PCr), N-acetylaspartate (NAA), choline (Cho), inositol (Ino), taurine (Tau), glutamate (Glu), and lactate (Lac) were assessed and compared to neuronal, glial and inflammatory changes in histology. In the pericontusional zone Cr&PCr, NAA, and Glu decreased immediately after trauma by -35%, -60%, and -37%, respectively, related to primary cell disintegration and secondary perturbations as reflected in histology. These metabolites partially recovered at 7d (-15%, -37%, and -21% respectively), in parallel to indicators of repair in immunhistochemistry. Control levels were not regained at 28d, in correlation to a decrease of viable neurons. Cho and Ino, initially lowered by -26% and -31% respectively, increased at 7d by +74% and 31%, reflecting glial activation and proliferation. The signal including the lactate resonance increased by >1000% with a maximum at 7d, possibly related to energy failure, inflammation and glial activation. A partial contribution of lipids to this signal cannot be fully excluded. The contralateral side showed mild astroglial activation in histology, but no changes in 1H-MRS. The study demonstrates the feasibility of volume selective 1H-MRS using the LCModel (Linear Combination of Model in vitro spectra of metabolites solutions) to monitor metabolic changes close to focal traumatic lesions and suggests how metabolic alterations can be differentiated in cause.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources