Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep 22:110 Suppl 1:S19-27.
doi: 10.1016/s0301-2115(03)00169-6.

Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation

Affiliations
Review

Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation

Waldemar Moll. Eur J Obstet Gynecol Reprod Biol. .

Abstract

In the course of hemochorial placentation, trophoblast cells build a most conductive placental stream bed for maternal blood with intramural foetal capillaries. The stream bed is adapted to the maternal vascular system, causing local increase in flow and shear stress. Subsequently, local maternal microvascular system vanishes. The remaining upstream arteries, up to the aorta, undergo "physiological changes", i.e. increase in circumference and length, predominantly by growth and remodeling. Peripheral uterine arteries, possibly collapsed due to low intraluminal pressure, show over-dilatation associated with endothelium destruction and trophoblast cell invasion. Overall arterial conductance increases to controlled extent; placental blood flow rate rises moderately. Intraplacental blood pressures are kept low allowing for free perfusion of placental foetal capillaries. According to the generally accepted concept, destructing impact of invading trophoblast cells causes the physiological changes. However, trophoblast invasion does not explain physiological changes occurring before and outside trophoblast invasion. On the other hand, physiological changes may well be induced by shear stress, which operates in extrauterine body regions as signal for vascular adaptation to growth. Thus, it is hypothesized that trophoblast cells control vascular adaptation and placental blood flow rate simply by constructing the hemochorial steam bed, thereby building up shear stress and triggering the general physiological automatism for controlled vascular adaptation to growth.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources