Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep 2;139(5 Pt 2):441-4.
doi: 10.7326/0003-4819-139-5_part_2-200309021-00012.

Gene-diet interactions in brain aging and neurodegenerative disorders

Affiliations
Free article
Review

Gene-diet interactions in brain aging and neurodegenerative disorders

Mark P Mattson. Ann Intern Med. .
Free article

Abstract

While there are many examples of people who live for 100 years or more with little evidence of a decline in brain function, many others are not so fortunate and experience a neurodegenerative disorder, such as Alzheimer disease or Parkinson disease. Although an increasing number of genetic factors that may affect the risk for neurodegenerative disorders are being identified, emerging findings suggest that dietary factors play major roles in determining whether the brain ages successfully or experiences a neurodegenerative disorder. Dietary factors may interact with disease-causing or predisposing genes in molecular cascades that either promote or prevent the degeneration of neurons. Epidemiologic findings suggest that high-calorie diets and folic acid deficiency increase the risk for Alzheimer disease and Parkinson disease; studies of animal models of these disorders have shown that dietary restriction (reduced calorie intake or intermittent fasting) and dietary supplementation with folic acid can reduce neuronal damage and improve behavioral outcome. Animal studies have shown that the beneficial effects of dietary restriction on the brain result in part from increased production of neurotrophic factors and cytoprotective protein chaperones in neurons. By keeping homocysteine levels low, folic acid can protect cerebral vessels and prevent the accumulation of DNA damage in neurons caused by oxidative stress and facilitated by homocysteine. Although additional studies are required in humans, the emerging data suggest that high-calorie diets and elevated homocysteine levels may render the brain vulnerable to age-related neurodegenerative disorders, particularly in persons with a genetic predisposition to such disorders.

PubMed Disclaimer

LinkOut - more resources