Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate
- PMID: 12967562
- DOI: 10.1016/s1534-5807(03)00233-8
Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate
Abstract
The tail of the frog tadpole, comprising spinal cord, muscle, and notochord, regenerates following partial amputation. We show that, in Xenopus, this occurs throughout development, except for a "refractory period" between stages 45 and 47, when tails heal over without regeneration. Regeneration can be enabled during this refractory period by activation of either the BMP or Notch signaling pathways. Conversely, regeneration can be prevented during the later, regenerative, stages by inhibition of either pathway. BMP signaling will cause regeneration of all tissues, whereas Notch signaling activates regeneration of spinal cord and notochord, but not muscle. An activated form of Msx1 can promote regeneration in the same way as BMP signaling. Epistasis experiments suggest that BMP signaling is upstream of Notch signaling but exerts an independent effect on muscle regeneration. The results demonstrate that regenerative capability can be enabled by genetic modifications that reactivate specific components of the developmental program.
Similar articles
-
Cellular and molecular mechanisms of regeneration in Xenopus.Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):745-51. doi: 10.1098/rstb.2004.1463. Philos Trans R Soc Lond B Biol Sci. 2004. PMID: 15293801 Free PMC article. Review.
-
Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles.Mech Dev. 2006 Sep;123(9):674-88. doi: 10.1016/j.mod.2006.07.001. Epub 2006 Jul 6. Mech Dev. 2006. PMID: 16938438
-
Transgenic analysis of signaling pathways required for Xenopus tadpole spinal cord and muscle regeneration.Anat Rec (Hoboken). 2012 Oct;295(10):1532-40. doi: 10.1002/ar.22437. Epub 2012 Aug 29. Anat Rec (Hoboken). 2012. PMID: 22933404 Free PMC article.
-
Overexpression of the transcription factor Msx1 is insufficient to drive complete regeneration of refractory stage Xenopus laevis hindlimbs.Dev Dyn. 2009 Jun;238(6):1366-78. doi: 10.1002/dvdy.21923. Dev Dyn. 2009. PMID: 19322766
-
Tail regeneration in the Xenopus tadpole.Dev Growth Differ. 2007 Feb;49(2):155-61. doi: 10.1111/j.1440-169X.2007.00912.x. Dev Growth Differ. 2007. PMID: 17335436 Review.
Cited by
-
Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology.Biochim Biophys Acta. 2015 Nov;1850(11):2318-28. doi: 10.1016/j.bbagen.2015.08.002. Epub 2015 Aug 8. Biochim Biophys Acta. 2015. PMID: 26259819 Free PMC article.
-
Physiological and molecular mechanisms of insect appendage regeneration.Cell Regen. 2023 Mar 2;12(1):9. doi: 10.1186/s13619-022-00156-1. Cell Regen. 2023. PMID: 36859631 Free PMC article. Review.
-
Identification and developmental expression of Xenopus laevis SUMO proteases.PLoS One. 2009 Dec 24;4(12):e8462. doi: 10.1371/journal.pone.0008462. PLoS One. 2009. PMID: 20041154 Free PMC article.
-
Regeneration and reprogramming compared.BMC Biol. 2010 Jan 20;8:5. doi: 10.1186/1741-7007-8-5. BMC Biol. 2010. PMID: 20089153 Free PMC article.
-
Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles.G3 (Bethesda). 2022 Jan 4;12(1):jkab387. doi: 10.1093/g3journal/jkab387. G3 (Bethesda). 2022. PMID: 34751375 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources