Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;35(9):1153-60.
doi: 10.1016/s0022-2828(03)00234-7.

Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy

Affiliations

Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy

Tetsuya Saito et al. J Mol Cell Cardiol. 2003 Sep.

Abstract

Calcineurin and calcium/calmodulin-dependent protein kinase (CaMK) II have been suggested to be the signaling molecules in cardiac hypertrophy. It was not known, however, whether these mechanisms are involved in cardiac hypertrophy induced by pressure overload without the influences of blood-derived humoral factors, such as angiotensin II. To elucidate the roles of calcineurin and CaMK II in this situation, we examined the effects of calcineurin and CaMK II inhibitors on pressure overload-induced expression of c-fos, an immediate-early gene, and protein synthesis using heart perfusion model. The hearts isolated from Sprague-Dawley rats were perfused according to the Langendorff technique, and then subjected to the acute pressure overload by raising the perfusion pressure. The activation of calcineurin was evaluated by its complex formation with calmodulin and by its R-II phosphopeptide dephosphorylation. CaMK II activation was evaluated by its autophosphorylation. Expression of c-fos mRNA and rates of protein synthesis were measured by northern blot analysis and by 14C-phenylalanine incorporation, respectively. Acute pressure overload significantly increased calcineurin activity, CaMK II activity, c-fos expression and protein synthesis. Cyclosporin A and FK506, the calcineurin inhibitors, significantly inhibited the increases in both c-fos expression and protein synthesis. KN62, a CaMK II inhibitor, also significantly prevented the increase in protein synthesis, whereas it failed to affect the expression of c-fos. These results suggest that both calcineurin and CaMK II pathways are critical in the pressure overload-induced acceleration of protein synthesis, and that transcription of c-fos gene is regulated by calcineurin pathway but not by CaMK II pathway.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources