Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep 18;2(9):947-54.
doi: 10.1016/s1568-7864(03)00087-9.

p53 and regulation of DNA damage recognition during nucleotide excision repair

Affiliations
Review

p53 and regulation of DNA damage recognition during nucleotide excision repair

Shanthi Adimoolam et al. DNA Repair (Amst). .

Abstract

In response to a variety of types of DNA damage, the p53 tumor suppressor gene product is activated and regulates a number of downstream cellular processes such as cell cycle arrest, apoptosis and DNA repair. Recent discoveries concerning the regulation of DNA repair processes by p53, such as nucleotide excision repair (NER) and base excision repair (BER) have paved the way for studies to understand the mechanisms governing p53-dependent DNA repair. Although several theories have been proposed, accumulating evidence points to a transcriptional regulatory role for p53 in NER, mediating expression of the global genomic repair (GGR)-specific damage recognition genes, DDB2 and XPC. In BER, a more direct role for p53 has been proposed, potentially acting through protein-protein interactions with BER specific factors. These advances have greatly enhanced our understanding of the role of p53 in DNA repair and this review comprehensively summarizes current opinions on the mechanisms of p53-dependent DNA repair.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources