Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;162(3):265-76.
doi: 10.1086/377188. Epub 2003 Sep 5.

Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve

Affiliations

Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve

Abigail Lane et al. Am Nat. 2003 Sep.

Abstract

Key aims of recent paleobiological research have been the construction of Phanerozoic global biodiversity patterns and the formulation of models and mechanisms of diversification describing such patterns. Two conflicting theories of global diversification have been equilibrium versus expansionist growth of taxonomic diversity. These models, however, rely on accurate empirical data curves, and it is not clear to what extent the taxonomic level at which the data are analyzed controls the resulting pattern. Global Phanerozoic marine diversity curves are constructed at ordinal, familial, and generic levels using several fossil-range data sets. The fit of a single logistic model reduces from ordinal through familial to generic level, while conversely, that of an exponential growth model increases. Three sequential logistic equations, fitted to three time periods during which diversity appears to approach or reach an equilibrium state, provide the best description of the data at familial and generic levels. However, an exponential growth curve describes the diversification of marine life since the end-Permian extinction equally as well as a logistic. A species-level model of global Phanerozoic marine diversification, constructed by extrapolation of the trends from familial to generic level, suggests growth in numbers of marine species was broadly exponential. When smaller subsets of the data are analyzed, the effect of taxonomic level on the shape of the diversity curve becomes more pronounced. In the absence of species data, a consistent signal at more than one higher taxonomic level is required to predict a species-level pattern.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources