Active reversal of motor memories reveals rules governing memory encoding
- PMID: 12971901
- DOI: 10.1016/s0896-6273(03)00562-2
Active reversal of motor memories reveals rules governing memory encoding
Abstract
Learning systems must be able to store memories reliably, yet be able to modify them when new learning is required. At the mechanistic level, new learning may either reverse the cellular events mediating the storage of old memories or mask the old memories with additional cellular changes that preserve the old cellular events in a latent form. Behavioral evidence about whether reversal or masking occurs in a particular circuit can constrain the cellular mechanisms used to store memories. Here we examine these constraints for a simple cerebellum-dependent learning task, motor learning in the vestibulo-ocular reflex (VOR). Learning can change the amplitude of the VOR in two opposite directions. Contrary to previous models about memory encoding by the cerebellum, our results indicate that these behavioral changes are implemented by different plasticity mechanisms, which reverse each other with unequal efficacy.
Similar articles
-
Learning in a simple motor system.Learn Mem. 2004 Mar-Apr;11(2):127-36. doi: 10.1101/lm.65804. Learn Mem. 2004. PMID: 15054127 Review.
-
Cerebellum-dependent learning: the role of multiple plasticity mechanisms.Annu Rev Neurosci. 2004;27:581-609. doi: 10.1146/annurev.neuro.27.070203.144238. Annu Rev Neurosci. 2004. PMID: 15217344 Review.
-
Selective engagement of plasticity mechanisms for motor memory storage.Neuron. 2006 Sep 21;51(6):823-34. doi: 10.1016/j.neuron.2006.08.026. Neuron. 2006. PMID: 16982426
-
Plasticity leading to cerebellum-dependent learning: two different regions, two different types.Pflugers Arch. 2019 Jul;471(7):927-934. doi: 10.1007/s00424-019-02282-3. Epub 2019 May 19. Pflugers Arch. 2019. PMID: 31104128 Review.
-
Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.Cerebellum. 2017 Aug;16(4):827-839. doi: 10.1007/s12311-017-0857-6. Cerebellum. 2017. PMID: 28444617
Cited by
-
Adaptive-filter models of the cerebellum: computational analysis.Cerebellum. 2008;7(4):567-71. doi: 10.1007/s12311-008-0067-3. Cerebellum. 2008. PMID: 18972182
-
Gating of neural error signals during motor learning.Elife. 2014 Apr 22;3:e02076. doi: 10.7554/eLife.02076. Elife. 2014. PMID: 24755290 Free PMC article.
-
Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input.J Neurophysiol. 2021 Oct 1;126(4):1391-1402. doi: 10.1152/jn.00715.2020. Epub 2021 Aug 4. J Neurophysiol. 2021. PMID: 34346783 Free PMC article.
-
Long-Lasting Visuo-Vestibular Mismatch in Freely-Behaving Mice Reduces the Vestibulo-Ocular Reflex and Leads to Neural Changes in the Direct Vestibular Pathway.eNeuro. 2017 Feb 27;4(1):ENEURO.0290-16.2017. doi: 10.1523/ENEURO.0290-16.2017. eCollection 2017 Jan-Feb. eNeuro. 2017. PMID: 28303261 Free PMC article.
-
Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input.Learn Mem. 2004 Sep-Oct;11(5):559-65. doi: 10.1101/lm.82304. Learn Mem. 2004. PMID: 15466309 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical