Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 29;1010(2):195-215.
doi: 10.1016/s0021-9673(03)01030-6.

Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry

Affiliations

Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry

Michal Holcapek et al. J Chromatogr A. .

Abstract

Triacylglycerols (TGs) and diacylglycerols (DGs) in 16 plant oil samples (hazelnut, pistachio, poppy-seed, almond, palm, Brazil-nut, rapeseed, macadamia, soyabean, sunflower, linseed, Dracocephalum moldavica, evening primrose, corn, amaranth, Silybum arianum) were analyzed by HPLC-MS with atmospheric pressure chemical ionization (APCI) and UV detection at 205 nm on two Nova-Pak C18 chromatographic columns connected in series. A single chromatographic column and non-aqueous ethanol-acetonitrile gradient system was used as a compromise between the analysis time and the resolution for the characterization of TG composition of five plant oils. APCI mass spectra were applied for the identification of all TGs and other acylglycerols. The isobaric positional isomers can be distinguished on the basis of different relative abundances of the fragment ions formed by preferred losses of the fatty acid from sn-1(3) positions compared to the sn-2 position. Excellent chromatographic resolution and broad retention window together with APCI mass spectra enabled positive identification of TGs containing fatty acids with odd numbers of carbon atoms such as margaric (C17:0) and heptadecanoic (C17:1) acids. The general fragmentation patterns of TGs in both APCI and electrospray ionization mass spectra were proposed on the basis of MSn spectra measured with an ion trap analyzer. The relative concentrations of particular TGs in the analyzed plant oils were estimated on the basis of relative peak areas measured with UV detection at 205 nm.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources