Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds
- PMID: 1304904
- PMCID: PMC2142193
- DOI: 10.1002/pro.5560010203
Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds
Abstract
The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment.
Similar articles
-
Alignment and searching for common protein folds using a data bank of structural templates.J Mol Biol. 1993 Jun 5;231(3):735-52. doi: 10.1006/jmbi.1993.1323. J Mol Biol. 1993. PMID: 8515448
-
Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.J Mol Biol. 1994 May 20;238(5):682-92. doi: 10.1006/jmbi.1994.1329. J Mol Biol. 1994. PMID: 8182743
-
An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.J Mol Biol. 2000 Aug 18;301(3):691-711. doi: 10.1006/jmbi.2000.3975. J Mol Biol. 2000. PMID: 10966778
-
Structural and functional restraints in the evolution of protein families and superfamilies.Biochem Soc Trans. 2009 Aug;37(Pt 4):727-33. doi: 10.1042/BST0370727. Biochem Soc Trans. 2009. PMID: 19614584 Review.
-
Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence.Crit Rev Biochem Mol Biol. 1995;30(1):1-94. doi: 10.3109/10409239509085139. Crit Rev Biochem Mol Biol. 1995. PMID: 7587278 Review.
Cited by
-
Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen.J Virol. 1992 Nov;66(11):6509-16. doi: 10.1128/JVI.66.11.6509-6516.1992. J Virol. 1992. PMID: 1328677 Free PMC article.
-
DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage.BMC Evol Biol. 2007 Oct 12;7:191. doi: 10.1186/1471-2148-7-191. BMC Evol Biol. 2007. PMID: 17935613 Free PMC article.
-
Exploring fold space preferences of new-born and ancient protein superfamilies.PLoS Comput Biol. 2013;9(11):e1003325. doi: 10.1371/journal.pcbi.1003325. Epub 2013 Nov 14. PLoS Comput Biol. 2013. PMID: 24244135 Free PMC article.
-
Sequence context-specific profiles for homology searching.Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3770-5. doi: 10.1073/pnas.0810767106. Epub 2009 Feb 20. Proc Natl Acad Sci U S A. 2009. PMID: 19234132 Free PMC article.
-
HOMSTRAD: a database of protein structure alignments for homologous families.Protein Sci. 1998 Nov;7(11):2469-71. doi: 10.1002/pro.5560071126. Protein Sci. 1998. PMID: 9828015 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources