Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1976 Feb;148(2):185-92.
doi: 10.1002/jmor.1051480205.

Histological and histochemical comparisons of muscle spindles in three hind limb muscles of the guinea pig

Comparative Study

Histological and histochemical comparisons of muscle spindles in three hind limb muscles of the guinea pig

A Maier et al. J Morphol. 1976 Feb.

Abstract

Guinea pig soleus, medial gastrocnemius and vastus lateralis muscles were compared for spindle density and distribution, number of intrafusal fibers per spindle and histochemical appearance of the axial bundle. A total of 326 spindles was used in the comparisons. Spindle density was over four times greater in the soleus than in either the medial gastrocnemius or vastus lateralis. In the soleus the spindles were distributed at random, but in the other two muscles no spindles were found in those fascicles in which fast-twitch glycolytic extrafusal fibers predominated. The average number of intrafusal fibers per spindle varied by less than 5% between the three kinds of muscles. About 80% of all spindles located had four intrafusal fibers, two of the nuclear bag type and two of the nuclear chain type. The histochemical appearance of the axial bundle was the same in each kind of muscle. Based on intensities of the myofibrillar adenosine triphosphatase reaction product at polar regions nuclear bag fibers were separable into two histochemical groups; nuclear chain fibers were of only one histochemical type.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources