Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 23;355(6358):356-8.
doi: 10.1038/355356a0.

Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel

Affiliations

Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel

A Lückhoff et al. Nature. .

Abstract

Receptor-mediated increases in the cytosolic free calcium ion concentration in most mammalian cells result from mobilization of Ca2+ from intracellular stores as well as transmembrane Ca2+ influx. Inositol 1,4,5-trisphosphate (InsP3) releases calcium from intracellular stores by opening a Ca(2+)-permeable channel in the endoplasmic reticulum. But the mechanism and regulation of Ca2+ entry into nonexcitable cells has remained elusive because the entry pathway has not been defined. Here we characterize a novel inositol 1,3,4,5-tetrakisphosphate (InsP4) and Ca(2+)-sensitive Ca(2+)-permeable channel in endothelial cells. We find that InsP4, which induces Ca2+ influx into acinar cells, enhances the activity of the Ca(2+)-permeable channel when exposed to the intracellular surface of endothelial cell inside-out patches. Our results suggest a molecular mechanism which is likely to be important for receptor-mediated Ca2+ entry.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources