Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb 15;267(5):3423-8.

Phosphatidylinositol-3-kinase in isolated rat adipocytes. Activation by insulin and subcellular distribution

Affiliations
  • PMID: 1310686
Free article

Phosphatidylinositol-3-kinase in isolated rat adipocytes. Activation by insulin and subcellular distribution

K L Kelly et al. J Biol Chem. .
Free article

Abstract

Insulin increases phosphatidylinositol-3-kinase (PI-3-kinase) activity in Chinese hamster ovary cells transfected with human insulin receptor (Ruderman, N. B., Kapeller, R., White, M. F., and Cantley, L. C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). The subcellular distribution of PI-3-kinase has not been investigated, and it is unclear if insulin has a stimulatory effect on PI-3-kinase in a nonproliferating target tissue, and, if so, whether this effect is subject to counter-regulation. To address these questions, we studied the effect of insulin on PI-3-kinase activity in isolated rat adipocytes. Activity was measured in plasma membranes, intracellular membranes, and cytosol of control and insulin-treated adipocytes, and in anti-Tyr(P) immunoprecipitates prepared from these fractions and from whole cell lysates. Treatment of adipocytes with insulin (200 nM) caused a half-maximal increase in anti-Tyr(P)-immunoprecipitable PI-3-kinase activity in whole cell lysates within 2 min. This effect was concentration-dependent, and it was sensitive to inhibition by norepinephrine. In insulin-stimulated cells, 75% of anti-Tyr(P)-immunoprecipitable PI-3-kinase activity was found in the low density microsomes. This fraction also exhibited the highest specific activity of PI-3-kinase, and insulin caused a further increase in this activity. Anti-Tyr(P)-immunoprecipitable PI-3-kinase activity was also found in the plasma membranes of insulin-treated cells, but this accounted for only a minor portion of the total and anti-Tyr(P)-immunoprecipitable PI-3-kinase activity. The majority of PI-3-kinase activity (90%) in control cells was cytosolic, but this was not increased in response to insulin nor was it anti-Tyr(P)-immunoprecipitable. These data demonstrate that insulin increases the activity of PI-3-kinase in adipocytes and this effect is subject to inhibition by a physiological antagonist of insulin action. The data also indicate that the effect of insulin to increase PI-3-kinase activity is expressed primarily in the low density intracellular membranes and to a lesser extent in the plasma membranes.

PubMed Disclaimer

Publication types

LinkOut - more resources