Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;130(3):1615-25.
doi: 10.1210/endo.130.3.1311244.

Thyrotropin regulates autophosphorylation and kinase activity in both the insulin and the insulin-like growth factor-I receptors in FRTL5 cells

Affiliations

Thyrotropin regulates autophosphorylation and kinase activity in both the insulin and the insulin-like growth factor-I receptors in FRTL5 cells

G Condorelli et al. Endocrinology. 1992 Mar.

Abstract

TSH regulation of insulin and insulin-like growth factor-I (IGF-I) receptor kinases has been studied in FRTL5 cultured thyroid cells. Preincubation of intact cells with TSH increased by 2-fold insulin and IGF-I receptor autophosphorylation and phosphorylation of the p175 endogenous substrate for the receptors. Enhanced phosphorylations reached a maximum within 30 min, were maintained for 30 min more, and vanished after 120 min of TSH incubation. TSH dose-responses exhibited half-maximal and maximal effects at 1 and 10 pM, respectively. In vitro, insulin as well as IGF-I receptors purified from cells treated with 10 pM TSH also exhibited 2-fold enhanced receptor autophosphorylation and kinase activity toward the exogenous substrate poly(Glu,Tyr) (4:1). At variance with TSH, cell incubation with either 8-bromo-cAMP or the protein kinase-C activator 12-O-tetradecanoylphorbol-13-acetate inhibited insulin and IGF-I receptor kinases. In intact cells, TSH stimulation of insulin and IGF-I receptor kinases was accompanied by enhanced turnover of phosphate on autophosphorylated receptors, increased receptor tyrosine phosphorylation, and decreased receptor serine/threonine phosphorylation in response to insulin. Incubation of in vivo labeled insulin and IGF-I receptors with extracts from TSH-treated cells also decreased receptor phosphoserine and phosphothreonine content. Furthermore, preincubation of insulin and IGF-I receptors with extracts from TSH-treated cells enhanced in vitro autophosphorylation. The latter effect was inhibited by the serine/threonine phosphatase inhibitors fluoride and okadaic acid, but not by the tyrosine phosphatase inhibitor vanadate. The data suggest that in FRTL5 cells, TSH induces the activity of a Ser/Thr protein phosphatase, which dephosphorylates insulin and IGF-I receptors and enhances their endogenous kinases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources