Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb 15;282 ( Pt 1)(Pt 1):139-45.
doi: 10.1042/bj2820139.

Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II

Affiliations

Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II

L Fliegel et al. Biochem J. .

Abstract

The Na+/H+ exchanger is a pH-regulatory protein that extrudes one H+ ion in exchange for one Na+ ion when intracellular pH declines. A number of studies have shown phorbol ester stimulation of activity in intact cells, leading to the idea that the exchanger is regulated by protein kinase C-mediated phosphorylation in vivo. cDNA encoding the protein has been cloned, and a recent model suggests a large internal cytoplasmic C-terminal domain that may be a site of regulation of the exchanger [Sardet, Franchi & Pouyssegur (1989) Cell 56, 271-280]. We examined this region of the protein using a rabbit cardiac Na+/H+ exchanger cDNA clone. cDNA of the Na+/H+ exchanger, coding for the C-terminal 178 amino acid residues, was cloned into the expression vector pEX-1 and expressed as a fusion protein with beta-galactosidase. The fusion protein reacted with an antibody produced against a synthetic peptide of the C-terminal 13 amino acid residues of the Na+/H+ exchanger, confirming the identity of the expressed protein. Control and experimental pEX-1-Na+/H+ exchanger protein was purified on a p-aminophenyl beta-D-thiogalactopyranoside-agarose column. Purified Ca2+/calmodulin-dependent protein kinase II readily phosphorylated the Na+/H+ exchanger protein in a Ca(2+)- and calmodulin-dependent manner in vitro, but this region of the protein was not a substrate for purified protein kinase C or for the catalytic subunit of cyclic AMP-dependent protein kinase. Control-expressed beta-galactosidase was phosphorylated to a maximal level of 0.77 +/- 0.17 mol of Pi/mol (mean +/- S.E.M., n = 6) whereas the fusion protein was phosphorylated to a maximal level of 4.09 +/- 0.39 mol of Pi/mol (n = 6), suggesting one site of phosphorylation in beta-galactosidase and three in the C-terminal domain of the Na+/H+ exchanger. Examination of the deduced amino acid sequence of this part of the exchanger reveals three consensus sequences for Ca2+/calmodulin-dependent protein kinase II. These results suggest that the exchanger may be directly regulated in vivo by calmodulin-dependent protein kinase II but not by protein kinase C or cyclic AMP-dependent protein kinase.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biochem. 1984 Feb;95(2):511-9 - PubMed
    1. Biochim Biophys Acta. 1983 Dec 30;726(4):245-64 - PubMed
    1. Biochemistry. 1977 Jul 12;16(14):3080-6 - PubMed
    1. Mol Cell Biochem. 1991 Apr 10;102(2):125-37 - PubMed
    1. J Biol Chem. 1990 Apr 5;265(10):5869-74 - PubMed

Publication types

MeSH terms