Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;187(2):413-22.
doi: 10.1016/0042-6822(92)90443-s.

Budding site of Sendai virus in polarized epithelial cells is one of the determinants for tropism and pathogenicity in mice

Affiliations

Budding site of Sendai virus in polarized epithelial cells is one of the determinants for tropism and pathogenicity in mice

M Tashiro et al. Virology. 1992 Apr.

Abstract

Wild-type Sendai virus fusion (F) glycoprotein requires trypsin or a trypsin-like protease for cleavage-activation in vitro and in vivo, respectively. The virus is pneumotropic in mice and buds at the apical domain of bronchial epithelial cells. On the other hand, the F protein of the protease-activation host range mutant, F1-R, is cleaved by ubiquitous proteases present in different cell lines and in various organs of mice. F1-R causes a systemic infection in mice and the mutant buds bipolarly at the apical and basolateral domains of infected epithelial cells. The enhanced cleavability of the F protein of F1-R has been shown to be a primary determinant for pantropism. Additionally, it has been postulated that bipolar budding of F1-R is required for the systemic spread of the virus and it has been attributed to mutations in the matrix (M) protein of F1-R (Tashiro et al., Virology 184, 227-234, 1991). In this study protease-activation mutants (KD series) were isolated from wild-type virus. They were revealed to bud at the apical domain, and the F protein was cleaved by ubiquitous proteases in mouse organs. The KD mutants were exclusively pneumotropic in mice following intranasal infection, whereas they caused a generalized infection when inoculated directly into the circulatory system. Comparative nucleotide sequence analysis of the F gene of the KD mutants revealed that the deduced amino acid substitutions responsible for enhanced cleavability of the F protein occurred removed from the cleavage site. Mutations were not at all found in the M gene of the KD mutants analyzed, in support of the role of the M protein of F1-R and of a revertant T-9 derived from the latter in bipolar budding. These results suggest that bipolar budding is necessary for the systemic spread of F1-R from the lungs and that apical budding by wild-type virus and the KD mutants leads to respiratory infections. Differential budding at the primary target of infection, in addition to the cleavage-activation of the F protein in mouse organs, is therefore also a determinant for tropism and pathogenicity of Sendai virus in mice.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources