Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;262(4 Pt 1):C1009-17.
doi: 10.1152/ajpcell.1992.262.4.C1009.

Na-K-Cl cotransport in the shark rectal gland. II. Regulation in isolated tubules

Affiliations

Na-K-Cl cotransport in the shark rectal gland. II. Regulation in isolated tubules

C Lytle et al. Am J Physiol. 1992 Apr.

Abstract

We examined the binding of [3H]benzmetanide, a potent inhibitor of Na-K-Cl cotransport, to secretory tubules isolated from dogfish shark rectal glands. Specific binding increased dramatically (from 3 to 40 pmol/mg protein) when the tubules were exposed to secretory stimuli [e.g., vasoactive intestinal peptide, adenosine, forskolin, and permeable adenosine 3',5'-cyclic monophosphate (cAMP) analogues]. Binding was also promoted by osmotically induced changes in cell volume; a 45% reduction in cell water content mimicked the effect of secretagogues on binding, whereas a 40% increase in cell water was only half as effective. Volume-responsive binding required extracellular sodium and chloride. The effect of cell shrinkage on binding was rapid and reversible (half-activation time = approximately 3 min, half-deactivation time = approximately 2 min). The binding sites evoked by secretagogues and by cell shrinkage had similar affinities for [3H]benzmetanide (Kd approximately 0.35 microM). Forskolin, a potent secretagogue, increased cell cAMP content 10-fold and respiration 7-fold, whereas hypertonicity affected neither parameter. The effects of cAMP-dependent stimuli and hypertonicity on binding were not additive. These results suggest the following. 1) Na-K-Cl cotransporters acquire the ability to bind [3H]benzmetanide with high affinity when activated. 2) Hormonal modulation of rectal gland secretion involves a coordinated regulation of basolateral Na-K-Cl cotransporters and apical Cl channels. 3) Separate signal transduction pathways, one sensitive to cAMP and another to cell volume, regulate the Na-K-Cl cotransporter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources