Amiodarone and desethylamiodarone increase intrasynaptosomal free calcium through receptor mediated channel
- PMID: 1314962
- DOI: 10.1007/BF00165739
Amiodarone and desethylamiodarone increase intrasynaptosomal free calcium through receptor mediated channel
Abstract
Long term amiodarone (AM) therapy has been associated with several side effects including neurotoxicity. Since AM alters Ca2+ regulated events, we have studied its effects on the compartmentation of free Ca2+ in the synaptosomes as an attempt to understand the mechanism of AM and its metabolite, desethylamiodarone (DEA)-induced neurotoxicity. Intact brain synaptosomes were prepared from male Sprague-Dawley rats. Both AM and DEA produced a concentration dependent increase in intrasynaptosomal free Ca2+ concentration ([Ca2]i) to micromolar levels. The increase in [Ca2]i was not transient and a steady rise was observed with time. Omission of Ca2+ from the external medium prevented the AM- and DEA-induced rise in [Ca2+]i suggesting that AM and DEA increased the intracellular [Ca2+]i due to increased influx of Ca2+ from external medium. AM- and DEA-induced increase in intrasynaptosomal [Ca2+]i was neither inhibited by a calcium channel blocker, verapamil, nor with a Na+ channel blocker, tetrodotoxin. However, the blockade of [Ca2+]i rise by AM and DEA was observed with MK-801, a receptor antagonist indicating that AM and DEA induced rise in [Ca2+]i is through receptor mediated channel. Both AM and DEA also inhibited N-methyl-D-aspartic acid (NMDA)-receptor binding in synaptic membranes in a concentration dependent manner, DEA being more effective, indicating that AM and DEA compete for the same site as that of NMDA and confirm the observation that these drugs increase intrasynaptosomal [Ca2+]i through receptor mediated channel. 45Ca accumulation into brain microsomes and mitochondria was significantly inhibited by AM and DEA, but without any effect on the Ca2+ release from these intracellular organelles.(ABSTRACT TRUNCATED AT 250 WORDS)
References
MeSH terms
Substances
LinkOut - more resources
Miscellaneous