Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Feb;31(2):131-7.
doi: 10.1002/ana.410310203.

Primary structure of the adult human skeletal muscle voltage-dependent sodium channel

Affiliations
Comparative Study

Primary structure of the adult human skeletal muscle voltage-dependent sodium channel

A L George Jr et al. Ann Neurol. 1992 Feb.

Abstract

The gene encoding the principal voltage-dependent sodium channel expressed in adult human skeletal muscle (SCN4A) has recently been linked to the pathogenesis of human hyperkalemic periodic paralysis and paramyotonia congenita. We report the cloning and nucleotide sequence determination of the normal product of this gene. The 7,823 nucleotide complementary DNA, designated hSkM1, encodes a 1,836 amino acid protein that exhibits 92% identity with the tetrodotoxin-sensitive rat skeletal muscle sodium channel alpha subunit, but lower homology with either the human heart sodium channel or with other sodium channels from immature rat muscle or rat brain. Specific hSkM1 RNA transcripts are expressed in adult human skeletal muscle but not in heart, brain, or uterus. The SCN4A gene product, hSkM1, is the human homologue of rSkM1, the tetrodotoxin-sensitive sodium channel characteristic of adult rat skeletal muscle. This structural information should provide the necessary backdrop for identifying and evaluating mutations affecting the function of this channel in the periodic paralyses.

PubMed Disclaimer

Publication types

LinkOut - more resources