Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 30;184(2):973-9.
doi: 10.1016/0006-291x(92)90686-f.

Cyclic inhibition-potentiation of the crosslinking of synapsin I with brain microtubules by protein kinase FA (an activator of ATP.Mg-dependent protein phosphatase)

Affiliations

Cyclic inhibition-potentiation of the crosslinking of synapsin I with brain microtubules by protein kinase FA (an activator of ATP.Mg-dependent protein phosphatase)

S D Yang et al. Biochem Biophys Res Commun. .

Abstract

The ATP.Mg-dependent type-1 protein phosphatase activating factor (FA) was identified as a protein kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton and is believed to be involved in the modulation of neurotransmission. More importantly, more than 90% of the phosphates in 32P-synapsin I phosphorylated by FA could be removed by the activated ATP.Mg-dependent type-1 protein phosphatase and the synapsin I phosphatase activity was found to be strictly FA-dependent. Functional study further revealed that as a synapsin I kinase, factor FA could phosphorylate synapsin I and thereby inhibits crosslinking of synapsin I with tubulin, while as a synapsin I phosphatase activator, FA could promote the crosslinking copolymerization of synapsin I with tubulin. Taken together, the results provide initial evidence that a cyclic modulation of the crosslinking copolymerization of synapsin I with brain microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for the regulation of axonal transport process during neurotransmission.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources