Potassium uptake by the dog erythrocyte
- PMID: 13163362
- PMCID: PMC2147396
- DOI: 10.1085/jgp.37.5.631
Potassium uptake by the dog erythrocyte
Abstract
The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0 degrees C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K](amb.) - 0.003 in which [K](amb.) refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories +/- 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.