Structural and functional analysis of the visna virus Rev-response element
- PMID: 1316470
- PMCID: PMC241143
- DOI: 10.1128/JVI.66.6.3609-3615.1992
Structural and functional analysis of the visna virus Rev-response element
Abstract
The distantly related lentiviruses human immunodeficiency virus type 1 (HIV-1) and visna virus each encode a posttranscriptional regulatory protein, termed Rev, that is critical for expression of the viral structural proteins. We genetically mapped the cis-acting target sequence for visna virus Rev, the visna virus Rev-response element or RRE-V, to a complex 176-nucleotide RNA stem-loop structure that coincides with sequences encoding the N terminus of the transmembrane component of envelope. The computer-predicted structure of the RRE-V was validated by in vitro analysis of structure-specific RNase cleavage patterns. The visna virus Rev protein was shown to interact specifically with the genetically defined RRE-V in vitro but was unable to bind the HIV-1 RRE. Similarly, HIV-1 Rev was also unable to bind the RRE-V specifically. We therefore conclude that the HIV-1 and visna virus Rev proteins, while functionally analogous, nevertheless display distinct RNA sequence specificities. These findings provide a biochemical explanation for the observation that these two viral regulatory proteins are functional only in the homologous viral system.
Similar articles
-
Visna virus encodes a post-transcriptional regulator of viral structural gene expression.Proc Natl Acad Sci U S A. 1990 Oct;87(19):7497-501. doi: 10.1073/pnas.87.19.7497. Proc Natl Acad Sci U S A. 1990. PMID: 2170981 Free PMC article.
-
HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region.Cell. 1990 Feb 23;60(4):685-93. doi: 10.1016/0092-8674(90)90671-z. Cell. 1990. PMID: 1689218
-
Arginine side-chain dynamics in the HIV-1 rev-RRE complex.J Mol Biol. 2000 Nov 3;303(4):515-29. doi: 10.1006/jmbi.2000.4143. J Mol Biol. 2000. PMID: 11054288
-
HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency.Cell. 1991 Apr 19;65(2):241-8. doi: 10.1016/0092-8674(91)90158-u. Cell. 1991. PMID: 2015625
-
The HIV-1 Antisense Gene ASP: The New Kid on the Block.Vaccines (Basel). 2021 May 17;9(5):513. doi: 10.3390/vaccines9050513. Vaccines (Basel). 2021. PMID: 34067514 Free PMC article. Review.
Cited by
-
Novel and dynamic evolution of equine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony.J Virol. 1997 Dec;71(12):9627-39. doi: 10.1128/JVI.71.12.9627-9639.1997. J Virol. 1997. PMID: 9371627 Free PMC article.
-
Mechanism of action of regulatory proteins encoded by complex retroviruses.Microbiol Rev. 1992 Sep;56(3):375-94. doi: 10.1128/mr.56.3.375-394.1992. Microbiol Rev. 1992. PMID: 1406488 Free PMC article. Review.
-
Visna virus-induced activation of MAPK is required for virus replication and correlates with virus-induced neuropathology.J Virol. 2002 Jan;76(2):817-28. doi: 10.1128/jvi.76.2.817-828.2002. J Virol. 2002. PMID: 11752171 Free PMC article.
-
Structural and functional analysis of the avian leukemia virus constitutive transport element.RNA. 1999 Dec;5(12):1645-55. doi: 10.1017/s1355838299991616. RNA. 1999. PMID: 10606274 Free PMC article.
-
The genome of feline immunodeficiency virus.Arch Virol. 1994;134(3-4):221-34. doi: 10.1007/BF01310563. Arch Virol. 1994. PMID: 8129613 Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources