Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;67(4):798-811.
doi: 10.1152/jn.1992.67.4.798.

Hypoxia-induced functional alterations in adult rat neocortex

Affiliations

Hypoxia-induced functional alterations in adult rat neocortex

H J Luhmann et al. J Neurophysiol. 1992 Apr.

Abstract

1. Brief periods of hypoxia (2-7 min) were induced in rat neocortical slices maintained in an interface-type recording chamber at 34-35 degrees C by changing the aerating gas from 95% O2-5% CO2 to 95% N2-5% CO2. Field potential (FP) and intracellular recordings were obtained in layers II/III of primary somatosensory cortex. Intracellular injection of biocytin revealed the characteristic morphology of supragranular spiny pyramidal neurons. 2. Excitatory synaptic transmission reversibly decreased by 45% as estimated from FP responses to orthodromic stimulation of the underlying white matter/layer VI. Excitatory postsynaptic potentials (EPSPs) were suppressed by 36% in amplitude and recovered within 2-3 min after reoxygenation. During the recovery period, EPSPs showed a reversible increase in duration by 72%. 3. Inhibitory synaptic transmission was completely blocked as determined in FP responses with a paired-pulse inhibition protocol. The fast inhibitory postsynaptic potential (IPSP) declined by 58% during hypoxia. The long-lasting IPSP was suppressed by 75% and showed incomplete recovery. During hypoxia, the amplitude of both IPSPs was significantly more strongly suppressed than the EPSP. 4. In 40% of the cells, hypoxia induced an early anoxic hyperpolarization with a reversal potential of E = -80.8 mV, followed by a postanoxic hyperpolarization (E = -89.4 mV). In a second group of cells (37%), a gradual anoxic depolarization with E = -57.5 mV was observed instead of an early hyperpolarization. In both groups of cells, the anoxic response was associated with a marked decrease in input resistance, by 42 and 31%, respectively. 5. The spike discharge frequency was reversibly suppressed by 71% during hypoxia. A transient hyperexcitability accompanied with a rise in input resistance and discharge rate was observed in 38% of the cells on reoxygenation. 6. The reversal potential of the anoxic hyperpolarization was unaffected by tetrodotoxin (TTX) but was significantly altered by application of the ATP-sensitive K+ channel (KATP) blocker gliquidone. Application of gliquidone additionally resulted in a significantly smaller hypoxia-induced decline in paired-pulse inhibition. 7. Increases in tissue high-energy phosphates induced by preincubating the slices in 25 mM creatine for greater than 2 h had a pronounced protective effect on excitatory and inhibitory synaptic transmission. 8. These data suggest a selective vulnerability of the neocortical inhibitory system during hypoxia. Our results further indicate that hypoxia activates a pre- and postsynaptic KATP conductance because of the decline in intracellular ATP.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources