Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar:448:99-119.
doi: 10.1113/jphysiol.1992.sp019031.

Actions of perchlorate ions on rat soleus muscle fibres

Affiliations

Actions of perchlorate ions on rat soleus muscle fibres

A F Dulhunty et al. J Physiol. 1992 Mar.

Abstract

1. The effects of perchlorate (ClO4-) on contraction have been studied in rat soleus muscle fibres using (i) potassium (K+) contracture and (ii) two-microelectrode-point voltage clamp techniques. 2. Membrane potentials (Vm) at all external [K+] were 3-5 mV more negative in ClO4-. The hyperpolarization could not be attributed to a change in Na+, K+, or Cl- permeability, or to an effect on the Na(+)-K+ pump. 3. ClO4- shifts the voltage dependence of tension activation, and contraction threshold, to more negative membrane potentials without altering maximum tension. Consequently, twitches and submaximal K+ contractures were potentiated, whereas tetanic contractions and 200 mM-K+ contractures were unaltered. 4. The decay of K+ contractures during steady depolarization with ClO4- developed a slow exponential phase with an average time constant of 6.05 +/- 0.76 min at -38 mV, and 1.68 +/- 0.15 min at -19 mV. This slow component was (a) under the rapid control of the surface Vm and (b) did not depend on external Ca2+. 5. Inactivation of E-C coupling was measured with a test 200 mM-K+ depolarization following 3-10 min depolarizations in conditioning solutions containing 20-120 mM-K+. ClO4- induced a negative shift in the curve-relating test K+ contracture amplitude to conditioning Vm but did not alter the rate of repriming of tension upon repolarization. 6. The results suggest that ClO4- increases the amount of activator produced during depolarization and thus allows the slow inactivation step in excitation-contraction (E-C) coupling to be reflected in the decay of K+ contracture tension. 7. A 'perchlorate contracture', which did not depend on the activation of E-C coupling, was observed. The contracture depended on external Ca2+, but not on voltage-dependent Ca2+ channels or Na(+)-Ca2+ exchange.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1990 Mar;415(6):688-92 - PubMed
    1. J Physiol. 1991 Aug;439:605-26 - PubMed
    1. J Physiol. 1987 Sep;390:213-27 - PubMed
    1. J Physiol. 1988 May;399:63-80 - PubMed
    1. J Membr Biol. 1989 Oct;111(1):57-67 - PubMed

LinkOut - more resources