Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun;12(6):2225-34.
doi: 10.1523/JNEUROSCI.12-06-02225.1992.

Multiple types of high-threshold calcium channels in rabbit sensory neurons: high-affinity block of neuronal L-type by nimodipine

Affiliations

Multiple types of high-threshold calcium channels in rabbit sensory neurons: high-affinity block of neuronal L-type by nimodipine

R T McCarthy et al. J Neurosci. 1992 Jun.

Abstract

Whole-cell and cell-attached patch recording have been used to characterize multiple types of voltage-dependent calcium channels in neurons freshly dispersed from rabbit dorsal root ganglia. In whole-cell patch recordings, high-threshold current, strongly resistant to inactivation by depolarized holding potentials (L-type; V1/2 = -27.2 mV), was potently inhibited by nimodipine. Assuming 1:1 binding, the dissociation constant for nimodipine binding to the inactivated state of the L-type calcium channel (KI) was 5.3 nM (n = 8). In contrast, a second type of high-threshold current less resistant to inactivation by depolarized holding potentials (N-type; V1/2 = -56.9 mV) was not blocked by nimodipine. Nimodipine-resistant N-type calcium current was inhibited by omega-conotoxin (5 microM). Cell-attached patch recordings of single calcium channel currents demonstrated the existence of three different unitary conductances; 7.4 pS, 13.1 pS, and 24.1 pS. The 24.1 pS high-threshold channel was enhanced by (-) BAY K 8644 and inhibited by nimodipine in a concentration- and voltage-dependent manner. Hyperpolarization reversed this block. These results demonstrate that, as in cardiac and smooth muscle, there is a component of neuronal high-threshold current corresponding to the L-type calcium channel that can be blocked with high affinity by nimodipine.

PubMed Disclaimer

LinkOut - more resources