New CNS-specific calcium antagonists
- PMID: 1319500
New CNS-specific calcium antagonists
Abstract
Ischemic insults to the brain in stroke or traumatic brain injury produce excessive release of glutamate from depolarized nerve terminals. This excessive glutamate release in turn stimulates massive calcium entry into nerve cells, activating a biochemical cascade that results in cell death. A major pathway of calcium entry into depolarized nerve cells is through voltage-sensitive, high threshold calcium channels. A large fraction of this calcium entry is mediated through "R-type" calcium channels, channels resistant to blockage by dihydropyridine calcium antagonists such as nimodipine. A newly discovered compound derived from spider venom, CNS 2103, antagonizes both R-type channels and dihydropyridine-sensitive ("L-type") calcium channels. This broad spectrum of action, coupled with selectivity for calcium channels over other classes of voltage-sensitive and ligand-gated ion channels, makes CNS 2103 an interesting lead for development of drugs to treat ischemic brain injury. Activation of presynaptic ("N-type") calcium channels in nerve terminals is a primary cause of excessive neurotransmitter release in brain ischemia. Prevention of glutamate release by blockade of N-type channels in glutamatergic nerve terminals may, at an early stage in the pathophysiological cascade, abort the process leading to nerve cell death. Cambridge NeuroScience has developed a novel rapid kinetic approach for monitoring glutamate release from brain nerve terminals in vitro, and this has led to CNS 1145, a substituted guanidine that selectively blocks a kinetic component of calcium-dependent glutamate release mediated by persistent depolarization. Additional evidence suggests that CNS 1145 antagonizes presynaptic N-type calcium channels, and this may account at least in part for its ability to block glutamate release.
Similar articles
-
Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.Neuroscience. 2005;136(4):1003-14. doi: 10.1016/j.neuroscience.2005.08.049. Epub 2005 Oct 13. Neuroscience. 2005. PMID: 16226383
-
Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.Eur J Neurosci. 2009 Mar;29(6):1131-40. doi: 10.1111/j.1460-9568.2009.06675.x. Eur J Neurosci. 2009. PMID: 19302149
-
Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons.J Pharmacol Exp Ther. 1997 Sep;282(3):1280-90. J Pharmacol Exp Ther. 1997. PMID: 9316836
-
[Neuronal protection in neurologic diseases?].Nervenarzt. 1994 Jun;65(6):355-60. Nervenarzt. 1994. PMID: 8072588 Review. German.
-
Neuroprotective use-dependent blockers of Na+ and Ca2+ channels controlling presynaptic release of glutamate.Ann N Y Acad Sci. 1995 Sep 15;765:210-29. doi: 10.1111/j.1749-6632.1995.tb16578.x. Ann N Y Acad Sci. 1995. PMID: 7486608 Review.
Cited by
-
Pharmacological treatment of traumatic brain injury: a review of agents in development.CNS Drugs. 2001;15(7):553-81. doi: 10.2165/00023210-200115070-00005. CNS Drugs. 2001. PMID: 11510625 Review.
-
The effect of global brain ischemia in normal and diabetic animals: the influence of calcium channel blockers.Endocrine. 2004 Nov;25(2):91-5. doi: 10.1385/ENDO:25:2:091. Endocrine. 2004. PMID: 15711020
-
Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets.Curr Med Chem. 2008;15(24):2456-71. doi: 10.2174/092986708785909094. Curr Med Chem. 2008. PMID: 18855673 Free PMC article. Review.