Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul 2;358(6381):63-6.
doi: 10.1038/358063a0.

Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaffin cells

Affiliations

Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaffin cells

C R Artalejo et al. Nature. .

Abstract

Bovine chromaffin cells have two components of whole-cell Ca2+ current: 'standard' Ca2+ currents that are activated by brief depolarizations, and 'facilitation' Ca2+ currents, which are normally quiescent but can be activated by large pre-depolarizations or by repetitive depolarizations to physiological potentials. The activation of protein kinase A can also stimulate Ca2+ current facilitation, indicating that phosphorylation can play a part in facilitation. Here we investigate the role of protein phosphorylation in the recruitment of facilitation Ca2+ currents by pre-pulses or repetitive depolarizations. We find that recruitment of facilitation by depolarization is a rapid first-order process which is suppressed by inhibitors of protein phosphorylation or by injection of phosphatase 2A into cells. Recruitment of facilitation Ca2+ current by voltage is normally reversible but phosphatase inhibitors render it irreversible. Our results indicate that recruitment of these Ca2+ currents by pre-pulses or repetitive depolarizations involves voltage-dependent phosphorylation of the facilitation Ca2+ channel or a closely associated regulatory protein. Voltage-dependent phosphorylation may therefore be a mechanism by which membrane potential can modulate ion channel activity.

PubMed Disclaimer

Publication types

LinkOut - more resources