Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Feb;3(1):29-47.
doi: 10.1016/s1043-4682(10)80006-6.

Biophysics of gap junctions

Affiliations
Review

Biophysics of gap junctions

M V Bennett et al. Semin Cell Biol. 1992 Feb.

Abstract

Gap junction channels, now known to be formed of connexins, connect the interiors of apposed cells. These channels can be opened and closed by various physiological stimuli and experimental treatments. They are permeable to ions and neutral molecules up to a size of about 1 kDa or 1.5 nm diameter, including second messengers and metabolites. The processes of gating and of permeation are the subject of this review. Voltage is a readily applied stimulus, and transjunctional voltages, or those between cytoplasm and exterior, affect most junctions. Single channel transitions between open and closed states are rapid and presumably involve a charge movement as occurs with channels of electrically excitable channels of nerve and muscle. Identification of gating domains and charges by domain replacement and site-directed mutagenesis is being pursued. Raising cytoplasmic H+ or Ca2+ concentrations rapidly reduces junctional conductance, and this action is generally reversible, at least in part. A number of lipophilic alcohols, fatty acids and volatile anesthetics have similar actions. Phosphorylation also modulates junctional conductance, and in several cases, sites of phosphorylation are known. These gating processes appear similar to those induced by voltage. Permeability measurement indicates that the channel is aqueous and that permeation is by diffusion with only minor interactions with the channel wall. Differences among junctions are known, but further characterization of connexin and cell specificity is required.

PubMed Disclaimer

Publication types

LinkOut - more resources