Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul 23;358(6384):325-7.
doi: 10.1038/358325a0.

Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin

Affiliations

Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin

R Rizzuto et al. Nature. .

Erratum in

  • Nature 1992 Dec 24-31;360(6406):768

Abstract

Introduction of Ca2+ indicators (photoproteins, fluorescent dyes) that can be trapped in the cytosolic compartment of living cells has yielded major advances in our knowledge of Ca2+ homeostasis. Ca2+ however regulates functions not only in the cytosol but also within various organelles where indicators have not yet been specifically targeted. Here we present a novel procedure by which the free Ca2+ concentration of mitochondria, [Ca2+]m, can be monitored continuously at rest and during stimulation. The complementary DNA for the Ca2+ sensitive photoprotein aequorin was fused in frame with that encoding a mitochondrial presequence. The hybrid cDNA was transfected into bovine endothelial cells and stable clones were obtained expressing variable amounts of mitochondrially targeted apoaequorin. The functional photoprotein could be reconstituted in intact cells by incubation with purified coelenterazine and [Ca2+]m could thus be monitored in situ. This allowed the unprecedented direct demonstration that agonist-stimulated elevations of cytosolic free Ca2+, [Ca2+]i, (measured in parallel with Fura-2) evoke rapid and transient increases of [Ca2+]m, which can be prevented by pretreatment with a mitochondrial uncoupler. The possibility of targeting aequorin to cellular organelles not only offers a new and powerful method for studying aspects of Ca2+ homeostasis that up to now could not be directly approached, but might also be used in the future as a tool to report in situ a variety of apparently unrelated phenomena of wide biological interest.

PubMed Disclaimer

Publication types

Grants and funding

LinkOut - more resources