Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun;3(6):603-12.
doi: 10.1091/mbc.3.6.603.

cAMP-induced desensitization of surface cAMP receptors in Dictyostelium: different second messengers mediate receptor phosphorylation, loss of ligand binding, degradation of receptor, and reduction of receptor mRNA levels

Affiliations
Free PMC article

cAMP-induced desensitization of surface cAMP receptors in Dictyostelium: different second messengers mediate receptor phosphorylation, loss of ligand binding, degradation of receptor, and reduction of receptor mRNA levels

P J Van Haastert et al. Mol Biol Cell. 1992 Jun.
Free PMC article

Abstract

Surface cAMP receptors on Dictyostelium cells are linked to several second messenger systems and mediate multiple physiological responses, including chemotaxis and differentiation. Activation of the receptor also triggers events which desensitize signal transduction. These events include the following: 1) loss of ligand binding without loss of receptor protein; 2) phosphorylation of the receptor protein, which may lead to impaired signal transduction; 3) redistribution and degradation of the receptor protein; and 4) decrease of cyclic AMP (cAMP) receptor mRNA levels. These mechanisms of desensitization were investigated with the use of mutant synag7, with no activation of adenylyl cyclase; fgdC, with no activation of phospholipase C; and fgdA, with defects in both pathways. cAMP-induced receptor phosphorylation and loss of ligand binding activity was normal in all mutants. In contrast, cAMP-induced degradation of the receptor was absent in all mutants. The cAMP-induced decrease of cAMP-receptor mRNA levels was normal in mutant synag7, but absent in mutant fgdC. Finally, the cAMP analogue (Rp)-cAMPS induced loss of ligand binding without inducing second messenger responses or phosphorylation, redistribution, and degradation of the receptor. We conclude that 1) loss of ligand binding can occur in the absence of receptor phosphorylation; 2) loss of ligand binding and receptor phosphorylation do not require the activation of second messenger systems; 3) cAMP-induced degradation of the receptor may require the phosphorylation of the receptor as well as the activation of at least the synag7 and fgdC gene products; and 4) cAMP-induced decrease of receptor mRNA levels requires the activation of the fgdC gene product and not the synag7 gene product. These results imply that desensitization is composed of multiple components that are regulated by different but partly overlapping sensory transduction pathways.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1984 Nov 10;259(21):13321-8 - PubMed
    1. Nature. 1985 Mar 14-20;314(6007):194-6 - PubMed
    1. J Biol Chem. 1983 Aug 25;258(16):9636-42 - PubMed
    1. Dev Genet. 1991;12(1-2):25-34 - PubMed
    1. J Cell Sci. 1991 Dec;100 ( Pt 4):825-31 - PubMed

Publication types

LinkOut - more resources