Hyperosmotic media inhibit voltage-dependent calcium influx and peptide release in Aplysia neurons
- PMID: 1323684
- DOI: 10.1007/BF00231869
Hyperosmotic media inhibit voltage-dependent calcium influx and peptide release in Aplysia neurons
Abstract
The bag cell neurons of Aplysia provide a model system in which to investigate the effects of hyperosmolality on the electrical and secretory properties of neurons. Brief stimulation of these neurons triggers an afterdischarge of action potentials that lasts approximately 20-30 min, during which time they release several neuroactive peptides. We have found that pre-incubation of intact clusters of bag cell neurons in hyperosmotic media prior to stimulation prevents the initiation of afterdischarges. Furthermore, an increase in osmolality of the external medium during an ongoing afterdischarge causes its premature termination. Hyperosmotic media attenuate the release of peptide evoked by both electrically stimulated afterdischarges and potassium-induced depolarization. The ability of high potassium to depolarize the bag cell neurons is, however, not impaired. Exposure of isolated bag cell neurons to hyperosmotic media also inhibits the amplitude of action potentials evoked by depolarizing current injection and attenuates the voltage-dependent calcium current. In isolated bag cell neurons loaded with the calcium indicator dye, fura-2, hyperosmotic media reduced the rise in intracellular calcium levels that normally occurs in response to depolarization. Our results suggest that the effects of hyperosmotic media on peptide secretion in bag cell neurons can largely be attributed to their effects on calcium entry.
Similar articles
-
An early sodium and a late calcium phase in the afterdischarge of peptide-secreting neurons of Aplysia.Brain Res. 1982 Apr 22;238(1):105-15. doi: 10.1016/0006-8993(82)90774-0. Brain Res. 1982. PMID: 6282390
-
Activation of a Ca2+-permeable cation channel produces a prolonged attenuation of intracellular Ca2+ release in Aplysia bag cell neurones.J Physiol. 2000 Jan 15;522 Pt 2(Pt 2):271-83. doi: 10.1111/j.1469-7793.2000.t01-2-00271.x. J Physiol. 2000. PMID: 10639103 Free PMC article.
-
Calcium entry causes a prolonged refractory period in peptidergic neurons of Aplysia.J Neurosci. 1983 Nov;3(11):2230-9. doi: 10.1523/JNEUROSCI.03-11-02230.1983. J Neurosci. 1983. PMID: 6631477 Free PMC article.
-
Transient changes in intracellular calcium associated with a prolonged increase in excitability in neurons of Aplysia californica.J Neurophysiol. 1994 Mar;71(3):1254-7. doi: 10.1152/jn.1994.71.3.1254. J Neurophysiol. 1994. PMID: 8201416
-
The bag cell neurons of Aplysia. A model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors.Mol Neurobiol. 1989 Winter;3(4):237-73. doi: 10.1007/BF02740607. Mol Neurobiol. 1989. PMID: 2698177 Review.
Cited by
-
Ca2+ influx and activation of a cation current are coupled to intracellular Ca2+ release in peptidergic neurons of Aplysia californica.J Physiol. 1996 Aug 1;494 ( Pt 3)(Pt 3):627-39. doi: 10.1113/jphysiol.1996.sp021520. J Physiol. 1996. PMID: 8865062 Free PMC article.
-
Hydrogen Peroxide Gates a Voltage-Dependent Cation Current in Aplysia Neuroendocrine Cells.J Neurosci. 2019 Dec 11;39(50):9900-9913. doi: 10.1523/JNEUROSCI.1460-19.2019. Epub 2019 Nov 1. J Neurosci. 2019. PMID: 31676600 Free PMC article.
-
Hyperosmolality-induced abnormal patterns of calcium mobilization in smooth muscle cells from non-diabetic and diabetic rats.Mol Cell Biochem. 1998 Jun;183(1-2):79-85. doi: 10.1023/a:1006813223216. Mol Cell Biochem. 1998. PMID: 9655181
-
Voltage gated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles.Invert Neurosci. 1996 Jun;2(1):9-34. doi: 10.1007/BF02336657. Invert Neurosci. 1996. PMID: 9372153 Review.
-
Hyperosmotic modulation of the cytosolic calcium concentration in a rat osteoblast-like cell line.J Physiol. 1995 Jul 1;486 ( Pt 1)(Pt 1):97-104. doi: 10.1113/jphysiol.1995.sp020793. J Physiol. 1995. PMID: 7562647 Free PMC article.