Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Aug 21;35(17):3296-300.
doi: 10.1021/jm00095a028.

4-Methyl-3-(arylsulfonyl)furoxans: a new class of potent inhibitors of platelet aggregation

Affiliations
Comparative Study

4-Methyl-3-(arylsulfonyl)furoxans: a new class of potent inhibitors of platelet aggregation

R Calvino et al. J Med Chem. .

Abstract

A series of 4-methyl-3-(arylthio)furoxans were synthesized by oxidation of 1-(arylthio)-2-methylglyoxymes with dinitrogen tetroxide. Reduction with trimethyl phosphite of the furoxan derivatives afforded the corresponding furazans, while oxidation with an equimolar amount of 30% hydrogen peroxide in acetic acid or with an excess of 81% hydrogen peroxide in trifluoroacetic acid afforded the corresponding arylsulfinyl and arylsulfonyl analogues, respectively. All the furoxan and furazan derivatives showed activity as inhibitors of platelet aggregation. 4-Methyl-3-(arylsulfonyl)furoxans were the most potent derivatives of the series. 4-Methyl-3-(phenylsulfonyl)furoxan (10a), one of the most active derivatives, inhibits the AA-induced increase of cytosolic free Ca2+ and production of malondialdehyde. A primary action of the compound on cyclooxygenase is excluded, as a stable epoxymethano analogue of prostaglandin H2 does not reverse the inhibitory effect of 10a. This compound produces a significant increase in cGMP which is likely to cause inhibition at an early stage of the platelet activation pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources