Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;9(1):1-6.
doi: 10.1677/jme.0.0090001.

Calcium ionophores increase intracellular pH in chicken granulosa cells

Affiliations

Calcium ionophores increase intracellular pH in chicken granulosa cells

E K Asem et al. J Mol Endocrinol. 1992 Aug.

Abstract

Several hormone agonists exert their physiological actions by triggering an inositol phospholipid-Ca2+ signalling cascade and cytosolic alkalinization. Although calcium ionophores have been used extensively to probe the role of Ca2+ in the regulation of steroidogenesis in granulosa cells, the precise relationship between changes in intracellular Ca2+ (Ca2+i) and pH (pHi) is unclear. In the present study we have used a fluorescent pH indicator, 2'7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein, to examine the influence of two Ca2+ ionophores, ionomycin and 4-Bromo-A23187 (4-Br-A23187), on pHi in chicken granulosa cells. Chicken granulosa cells from the largest preovulatory follicle were incubated with Ca2+ ionophores (0-2 microM) and/or inhibitors of Na+/H+ antiport (amiloride, dimethylamiloride and ethylisopropyl amiloride; 0.5, 5 and 50 microM respectively) in the presence of Na+ (or choline+; 0-144 mM) and/or Ca2+ (0-10 mM). Ionomycin or 4-Br-A23187 elicited a rapid and sustained cytosolic alkalinization. The magnitude of increase in pHi was dependent on the concentration of the Ca2+ ionophore and the presence of extracellular Ca2+ but independent of extracellular Na+. Pretreatment of the cells with amiloride or its analogues failed to affect the increase in pHi induced by the Ca2+ ionophores significantly. These findings demonstrate that, in addition to their widely reported effects on Ca2+i redistribution in granulosa cells, 4-Br-A23187 and ionomycin cause Ca(2+)-dependent cytosolic alkalinization. This action of the Ca2+ ionophores is independent of the Na+/H+ antiport. Caution must be exercised in using Ca2+ ionophores as probes to define the role of Ca2+ in the regulation of granulosa cell function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources