Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;10(8):733-40.

Na(+)-K+ pump and Na(+)-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation

Affiliations
  • PMID: 1325504

Na(+)-K+ pump and Na(+)-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation

S N Orlov et al. J Hypertens. 1992 Aug.

Abstract

Objective: This paper examines the hypothesis that aberrations in vascular smooth muscle univalent ion transport systems play an important role in the pathogenesis of hypertension.

Design: Baseline Na(+)-K+ pump and Na(+)-K(+)-2Cl- co-transport activities and the regulation of these ion transport systems by angiotensin II and second messenger molecules have been studied in cultured aortic smooth muscle cells (VSMC) from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR).

Methods: Ion transport was studied using isotopic univalent cations (86Rb and 22Na).

Results: Baseline Na(+)-K+ pump activity was comparable between SHR- and WKY-derived VSMC. Baseline Na(+)-K(+)-2Cl- and K(+)-Cl- co-transport activity as well as K+ leakage were significantly greater in SHR VSMC. Baseline Na(+)-K(+)-2Cl- co-transport was sensitive to inhibition by forskolin and ethyleneglycol-bis-(beta-amino ethylester)-N,N,N',N'-tetraacetic acid, whereas cyclic guanosine monophosphate and phorbol 12-myristate, 13-acetate had no effect. Angiotensin II-stimulated Na(+)-K(+)-2Cl- co-transport activity did not differ between WKY and SHR VSMC. Angiotensin II increased Na(+)-K(+)-pump activity to a significantly greater extent in SHR VSMC. The stimulatory effect of angiotensin II upon Na(+)-K+ pump activity was reduced under Na(+)-free buffer conditions and in the presence of the Na(+)-H+ exchange inhibitor, ethylisopropyl amiloride. Na(+)-K+ pump activity was also stimulated by the protein kinase C activator, phorbol 12-myristate, 13-acetate, and this was completely inhibited under Na(+)-free buffer conditions.

Conclusions: SHR VSMC exhibit anomalous Na(+)-K(+)-pump and Na(+)-K(+)-2Cl- co-transport activities. The influence of these univalent ion transport systems upon cellular Na+ and Ca2+ homeostasis invoke their participation in the pathogenesis of hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources