Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain
- PMID: 1326547
Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain
Abstract
Rat liver fructose-2,6-bisphosphatase, which catalyzes its reaction via a phosphoenzyme intermediate, is evolutionarily related to the phosphoglycerate mutase enzyme family (Bazan, F., Fletterick, R., and Pilkis, S.J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). Arg-7 and Arg-59 of the yeast phosphoglycerate mutase have been postulated to be substrate-binding residues based on the x-ray crystal structure. The corresponding residues in rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, Arg-257 and Arg-307, were mutated to alanine. The Arg257Ala and Arg307Ala mutants and the wild-type enzyme were expressed in Escherichia coli and then purified to homogeneity. Both mutant enzymes had identical far and near UV circular dichroism spectra and 6-phosphofructo-2-kinase activities when compared with the wild-type enzyme. However, the Arg257Ala and Arg307Ala mutants had altered steady state fructose-2,6-bisphosphatase kinetic properties; the Km values for fructose-2,6-bisphosphate of the Arg257Ala and Arg307Ala mutants were increased by 12,500- and 760-fold, whereas the Ki values for inorganic phosphate were increased 7.4- and 147-fold, respectively, as compared with the wild-type values. However, the Ki values for the other product, fructose-6-phosphate, were unchanged for the mutant enzymes. Although both mutants exhibited parallel changes in kinetic parameters that reflect substrate/product binding, they had opposing effects on their respective maximal velocities; the maximal velocity of Arg257Ala was 11-fold higher, whereas that for Arg307Ala was 700-fold lower, than that of the wild-type enzyme. Pre-steady state kinetic studies demonstrated that the rate of phosphoenzyme formation for Arg307Ala was at least 4000-fold lower than that of the wild-type enzyme, whereas the rate for Arg257Ala was similar to the wild-type enzyme. Furthermore, consistent with the Vmax changes, the rate constant for phosphoenzyme breakdown for Arg257Ala was increased 9-fold, whereas that for Arg307Ala was decreased by a factor of 500-fold, as compared with the wild-type value. The results indicate that both Arg-257 and Arg-307 interact with the reactive C-2 phospho group of fructose 2,6-bisphosphate and that Arg-307 stabilizes this phospho group in the transition state during phosphoenzyme breakdown, whereas Arg-257 stabilizes the phospho group of the ground state phosphoenzyme intermediate.
Similar articles
-
Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme.Protein Sci. 1995 Jun;4(6):1023-37. doi: 10.1002/pro.5560040601. Protein Sci. 1995. PMID: 7549867 Free PMC article. Review.
-
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain.J Biol Chem. 1992 Oct 25;267(30):21588-94. J Biol Chem. 1992. PMID: 1328239
-
Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.J Biol Chem. 1992 Aug 15;267(23):16669-75. J Biol Chem. 1992. PMID: 1322913
-
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis.J Biol Chem. 1990 Sep 15;265(26):15617-22. J Biol Chem. 1990. PMID: 2168419
-
Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a review of relationships between the two activities of the enzyme.J Cell Biochem. 1984;26(1):1-17. doi: 10.1002/jcb.240260102. J Cell Biochem. 1984. PMID: 6096384 Review.
Cited by
-
Potential use of sugar binding proteins in reactors for regeneration of CO2 fixation acceptor D-Ribulose-1,5-bisphosphate.Microb Cell Fact. 2004 Jun 2;3(1):7. doi: 10.1186/1475-2859-3-7. Microb Cell Fact. 2004. PMID: 15175111 Free PMC article.
-
Site-directed mutagenesis of rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: role of Asp-130 in the 2-kinase domain.Biochem J. 1994 May 15;300 ( Pt 1)(Pt 1):111-5. doi: 10.1042/bj3000111. Biochem J. 1994. PMID: 8198521 Free PMC article.
-
Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme.Protein Sci. 1995 Jun;4(6):1023-37. doi: 10.1002/pro.5560040601. Protein Sci. 1995. PMID: 7549867 Free PMC article. Review.
-
Identification of transient intermediates in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by 31P-NMR spectroscopy.Biochem J. 1995 May 15;308 ( Pt 1)(Pt 1):189-95. doi: 10.1042/bj3080189. Biochem J. 1995. PMID: 7755565 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous