Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria
- PMID: 1332775
- DOI: 10.1021/bi00162a026
Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria
Abstract
Intramolecular electron redistribution in cytochrome c oxidase after photolysis of the partially reduced CO-bound enzyme was followed at a number of different wavelengths by absorption spectroscopy. Spectra were constructed for the first two phases of this process. The first phase (tau = 3 microseconds) has a spectrum essentially identical to the difference between the Fea and Fea3 reduced-minus-oxidized spectra, indicating a 1:1 stoichiometry between the amount of Fea3 oxidized and Fea reduced. It is not necessary to invoke reduction or oxidation of other redox carriers in this phase. The second phase (tau = 35 microseconds) spectrum appears to be a linear combination of the Fea3 and Fea reduced-minus-oxidized difference spectra, reflecting the oxidation of four parts of Fea3 for every part of Fea oxidized. This process can be described in terms of transfer to CuA of electrons from the Fea3<==>Fea equilibrium system established in the first phase. The relative contributions of Fea3 and Fea in the second phase allow us to calculate the equilibrium constant for Fea3<==>Fea electron exchange, which yields a delta Em of 36 mV for the two centers (Fea3 more positive). Together with the apparent rate constant for the fast phase, this equilibrium constant yields, in turn, the forward (kf) and reverse (kr) rates for electron transfer from Fea to Fea3 as follows: kf = 2.4 x 10(5) s-1 and kr = 6 x 10(4) s-1. kf is much faster than any observed step in the reaction of the reduced enzyme with O2. Thus, the catalytic mechanism of O2 reduction to water is not rate-limited by electron transfer from Fea to the binuclear Fea3/Cu(B) site.