Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 15;210(1):101-7.
doi: 10.1111/j.1432-1033.1992.tb17396.x.

Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum

Affiliations
Free article

Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum

S Rospert et al. Eur J Biochem. .
Free article

Abstract

Methyl-coenzyme-M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M [2-(methylthio)ethanesulfonate] and 7-mercaptoheptanoylthreonine phosphate in methanogenic archaea. The enzyme contains the nickel porphinoid coenzyme F430 as a prosthetic group. In the active, reduced (red) state, the enzyme displays two characteristic EPR signals, MCR-red1 and MCR-red2, probably derived from Ni(I). In the presence of the substrate methyl-coenzyme M, the rhombic MCR-red2 signal is quantitatively converted to the axial MCR-red1 signal. We report here on the effects of inhibitory substrate analogues on the EPR spectrum of the enzyme. 3-Bromopropanesulfonate (BrPrSO3), which is the most potent inhibitor of MCR known to date (apparent Ki = 0.05 microM), converted the EPR signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal designated MCR-BrPrSO3. 3-Fluoropropanesulfonate (apparent Ki < 50 microM) and 3-iodopropanesulfonate (apparent Ki < 1 microM) induced a signal identical to that induced by BrPrSO3 without affecting the line shape, despite the fact that the fluorine, bromine and iodine isotopes employed have nuclear spins of I = 1/2, I = 3/2 and I = 5/2, respectively. This finding suggests that MCR-BrPrSO3 is not the result of a close halogen-Ni(I) interaction. 7-Bromoheptanoylthreonine phosphate (BrHpoThrP) (apparent Ki = 5 microM), which is an inhibitory substrate analogue of 7-mercaptoheptanoylthreonine phosphate, converted the signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal, MCR-BrHpoThrP, similar but not identical to MCR-BrPrSO3. The results indicate that inhibition of MCR by the halogenated substrate analogues investigated above is not via oxidation of Ni(I)F430. The different MCR EPR signals are assigned to different enzyme/substrate and enzyme/inhibitor complexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources