Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Dec 5;267(34):24363-8.

Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct

Affiliations
  • PMID: 1332953
Free article
Comparative Study

Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct

R Khosravi-Far et al. J Biol Chem. .
Free article

Abstract

Rab proteins typically lack the consensus carboxyl-terminal CXXX motif that signals isoprenoid modification of Ras and other isoprenylated proteins and, instead, terminate in either CC or CXC sequences (C = cysteine, X = any amino acid). To compare the functional relationship between the Ras CXXX and the Rab CC/CXC motifs, we have generated chimeric Ras proteins terminating in Rab carboxyl-terminal CC or CXC sequences. These mutant Ras proteins were not isoprenylated in vitro or in vivo, demonstrating that the CC and CXC sequences alone are not sufficient to replace a CXXX sequence to signal Ras isoprenoid modification. Surprisingly, chimeric Ras/Rab proteins terminating in significant lengths of carboxyl-terminal sequences from Rab1b (7-139 residues), Rab2 (5-151 residues), or Rab3a (12 residues) were also not isoprenylated. These results demonstrate that the sequence requirements for isoprenoid modification of Rab proteins are more complex than the simple tetrapeptide CXXX sequence for isoprenoid modification of Ras proteins and suggest that the Rab geranylgeranyl transferase(s) requires recognition of protein conformation to signal the addition of geranylgeranyl groups. Finally, competition studies demonstrate that a common geranylgeranyl transferase activity is responsible for the modification of Rab proteins terminating in CC or CXC motifs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources