Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992:607:111-23.

Charge movements via the cardiac Na,K-ATPase

Affiliations
  • PMID: 1333148

Charge movements via the cardiac Na,K-ATPase

D C Gadsby et al. Acta Physiol Scand Suppl. 1992.

Abstract

The voltage dependence of transient and steady-state pump currents was examined in guinea pig ventricular myocytes to investigate mechanisms of charge translocation by the Na,K-ATPase. Na/K pump current was determined at approximately 36 degrees C as strophanthidin-sensitive whole-cell current in myocytes voltage clamped and internally dialyzed via wide tipped pipettes containing a pipette perfusion device. External Na ions diminished stationary pump current during forward Na/K cycling in a voltage dependent manner, the inhibition becoming stronger upon hyperpolarization. When Na,K-ATPase activity was restricted to Na translocation steps, stationary pump current was prevented but voltage pulses still elicited large transient pump currents which could be abolished by oligomycin B (> or = 2 micrograms/ml). The transients arose instantaneously on stepping the voltage, and decayed with voltage-dependent approximately single exponential time courses. The decay rates, and their high temperature sensitivity (approximately 200 s-1 at 0 mV at 36 degrees C; approximately 40 s-1 at 20 degrees C), suggest that the charge movements were limited by a conformational change associated with Na deocclusion. Those rates varied asymmetrically with voltage, changing little at positive voltages but increasing roughly exponentially with hyperpolarization (e-fold/approximately 80 mV). Lowering the extracellular [Na] ([Na]o) slowed the relaxation of charge movement at negative potentials but had little effect at positive potentials, and so shifted the rate constant-voltage curve to the left. The implied dependence on [Na]o of the backward rate constant governing pump charge movement accounts satisfactorily for the observed [Na]o sensitivity of stationary outward Na/K pump current, and indicates that the voltage-dependent step somehow involves the release of Na ions to the external medium. However, no strophanthidin-sensitive current was seen, at saturating external [K], when Na,K-ATPase activity was limited to K translocation steps by complete withdrawal of Na ions. But, at very low [Na]o, a weak negative slope appeared in the stationary pump current-voltage relationship at subsaturating, but not at saturating, external [K], indicating an increased apparent affinity for external K at more negative potentials. The results support the existence of a high field access channel through which extracellular Na and K ions must pass before interacting with their binding sites deep within the Na,K-ATPase molecule.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources